Characterizing the Relationship between Temperature and Soil Moisture Extremes and Their Role in the Exacerbation of Heat Waves over the Contiguous United States

David O. Benson George Mason University, Fairfax, Virginia

Search for other papers by David O. Benson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0659-2217
and
Paul A. Dirmeyer George Mason University, Fairfax, Virginia
Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Paul A. Dirmeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Increased heat-wave frequency across the United States has led to the need for improved predictability of heat-wave events. A detailed understanding of land–atmosphere interactions and the relationship between soil moisture and temperature extremes could provide useful information for prediction. This study identifies, for many locations, a threshold of soil moisture below which there is an increase in the sensitivity of atmospheric temperature to declining soil moisture. This shift to a hypersensitive regime causes the atmosphere to be more susceptible to atmospherically driven heat-wave conditions. The soil moisture breakpoint where the regime shift occurs is estimated using segmented regression applied to observations and reanalysis data. It is shown that as the soil gets drier, there is a concomitant change in the rate of decrease in latent heat flux and increase in sensible heat flux leading to a strong positive feedback of increased air temperature near the surface, which further dries out the soil. Central, southwestern, and southeastern parts of the United States seem to have regions of clear regime shifts, while the eastern part of the United States generally does not get dry enough to reveal significant breakpoints. Sensible heat flux is seen to be a primary driver of this increased temperature sensitivity aided by the drop in latent heat flux. An investigation of flux tower sites verifies the breakpoint–flux relationships found in reanalysis data. Accurate estimation of these breakpoints can contribute to improved heat-wave prediction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David O. Benson, dbenson3@gmu.edu

Abstract

Increased heat-wave frequency across the United States has led to the need for improved predictability of heat-wave events. A detailed understanding of land–atmosphere interactions and the relationship between soil moisture and temperature extremes could provide useful information for prediction. This study identifies, for many locations, a threshold of soil moisture below which there is an increase in the sensitivity of atmospheric temperature to declining soil moisture. This shift to a hypersensitive regime causes the atmosphere to be more susceptible to atmospherically driven heat-wave conditions. The soil moisture breakpoint where the regime shift occurs is estimated using segmented regression applied to observations and reanalysis data. It is shown that as the soil gets drier, there is a concomitant change in the rate of decrease in latent heat flux and increase in sensible heat flux leading to a strong positive feedback of increased air temperature near the surface, which further dries out the soil. Central, southwestern, and southeastern parts of the United States seem to have regions of clear regime shifts, while the eastern part of the United States generally does not get dry enough to reveal significant breakpoints. Sensible heat flux is seen to be a primary driver of this increased temperature sensitivity aided by the drop in latent heat flux. An investigation of flux tower sites verifies the breakpoint–flux relationships found in reanalysis data. Accurate estimation of these breakpoints can contribute to improved heat-wave prediction.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David O. Benson, dbenson3@gmu.edu
Save
  • Alfaro, E. J., A. Gershunov, and D. Cayan, 2006: Prediction of summer maximum and minimum temperature over the central and western United States: The roles of soil moisture and sea surface temperature. J. Climate, 19, 14071421, https://doi.org/10.1175/JCLI3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, G. B., and M. L. Bell, 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ. Health Perspect., 119, 210218, https://doi.org/10.1289/ehp.1002313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E. J., K. Pegion, B. P. Kirtman, D. C. Collins, and E. Lajoie, 2019: The Subseasonal Experiment (SubX): A multi-model subseasonal prediction experiment. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A23A-01.

  • Cai, W., T. Cowan, P. Briggs, and M. Raupach, 2009: Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys. Res. Lett., 36, L21709, https://doi.org/10.1029/2009GL040334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., J. Luterbacher, H. von Weissenfluh, E. Xoplaki, M. Brunet, and H. Wanner, 2007: Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Climate Dyn., 29, 251275, https://doi.org/10.1007/s00382-007-0233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, https://doi.org/10.1002/2013GL058826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeor., 17, 10491067, https://doi.org/10.1175/JHM-D-15-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 11113 127, https://doi.org/10.1029/2018JD029103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., G. Balsamo, E. M. Blyth, R. Morrison, and H. M. Cooper, 2021: Land-atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Adv., https://doi.org/10.1029/2020AV000283, in press.

    • Search Google Scholar
    • Export Citation
  • Durre, I., J. M. Wallace, and D. P. Lettenmaier, 2000: Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. J. Climate, 13, 26412651, https://doi.org/10.1175/1520-0442(2000)013<2641:DOEDMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and S. M. Quiring, 2014: In situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet. Geophys. Res. Lett., 41, 47274734, https://doi.org/10.1002/2014GL060949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and J. T. Schoof, 2017: Characterizing extreme and oppressive heat waves in Illinois. J. Geophys. Res. Atmos., 122, 682698, https://doi.org/10.1002/2016JD025721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., P. A. Dirmeyer, and D. O. Benson, 2018: Evaluation of heat wave forecasts seamlessly across subseasonal timescales. npj Climate Atmos. Sci., 1, 20, https://doi.org/10.1038/s41612-018-0027-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Founda, D., F. Pierros, G. Katavoutas, and I. Keramitsoglou, 2019: Observed trends in thermal stress at European cities with different background climates. Atmosphere, 10, 436, https://doi.org/10.3390/atmos10080436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghighi, E., D. J. Short Gianotti, R. Akbar, G. D. Salvucci, and D. Entekhabi, 2018: Soil and atmospheric controls on the land surface energy balance: A generalized framework for distinguishing moisture-limited and energy-limited evaporation regimes. Water Resour. Res., 54, 18311851, https://doi.org/10.1002/2017WR021729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hirsch, A. L., A. J. Pitman, and J. Kala, 2014: The role of land cover change in modulating the soil moisture-temperature land-atmosphere coupling strength over Australia. Geophys. Res. Lett., 41, 58835890, https://doi.org/10.1002/2014GL061179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., and Coauthors, 2019: Amplification of Australian heatwaves via local land-atmosphere coupling. J. Geophys. Res. Atmos., 124, 13 62513 647, https://doi.org/10.1029/2019JD030665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H., and P. A. Dirmeyer, 2021: Nonlinearity and multivariate dependencies in land-atmosphere coupling. Water Resour. Res., https://doi.org/10.1029/2020WR028179, in press.

    • Crossref
    • Export Citation
  • Huang, J., H. M. van den Dool, and K. P. Georgarakos, 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, G., and Coauthors, 2019: Land–climate interactions. Climate Change and Land, P. R. Shukla et al., Eds., Cambridge University Press, 131–247.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, H. Wang, S. P. Mahanama, and A. M. DeAngelis, 2019: Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeor., 20, 12411258, https://doi.org/10.1175/JHM-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmi, V., T. J. Jackson, and D. Zehrfuhs, 2003: Soil moisture–temperature relationships: Results from two field experiments. Hydrol. Processes, 17, 30413057, https://doi.org/10.1002/hyp.1275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and Z. Pu, 2019: Does soil moisture have an influence on near-surface temperature? J. Geophys. Res. Atmos., 124, 64446466, https://doi.org/10.1029/2018JD029750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazdiyasni, O., and A. AghaKouchak, 2015: Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA, 112, 11 48411 489, https://doi.org/10.1073/pnas.1422945112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. Van Den Berg, A. J. Teuling, and R. A. M. De Jeu, 2012: Soil moisture-temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012GL053703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. Vilà-Guerau de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., P. Gentine, S. I. Seneviratne, and A. J. Teuling, 2019: Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci., 1436, 1935, https://doi.org/10.1111/nyas.13912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, https://doi.org/10.1073/pnas.1204330109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muggeo, V. M., 2008: Segmented: An R package to fit regression models with broken-line relationships. R News, 8, 2025.

  • Pastorello, G., D. Papale, H. Chu, C. Trotta, D. Agarwal, E. Canfora, D. Baldocchi, and M. Torn, 2017: A new data set to keep a sharper eye on land-air exchanges. Eos, Trans. Amer. Geophys. Union, 98, https://doi.org/10.1029/2017EO071597.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, https://doi.org/10.1029/2012GL053361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA natural resources conservation service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, https://doi.org/10.1175/2007JTECHA930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, D. L., J. Keune, C. C. Van Heerwaarden, J. V. G. de Arellano, A. J. Teuling, and D. G. Miralles, 2019: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci., 12, 712717, https://doi.org/10.1038/s41561-019-0431-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006a: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7, 10901112, https://doi.org/10.1175/JHM533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006b: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2018: Temporal trends in absolute and relative extreme temperature events across North America. J. Geophys. Res. Atmos., 123, 11 88911 898, https://doi.org/10.1029/2018JD029150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., F. D’Andrea, and P. Drobinski, 2012: Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett., 7, 014023, https://doi.org/10.1088/1748-9326/7/1/014023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., P. Drobinski, F. D’Andrea, C. Lebeaupin-Brossier, and S. Bastin, 2014: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over western Europe. Climate Dyn., 42, 13091324, https://doi.org/10.1007/s00382-013-1794-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuichard, N., and D. Papale, 2015: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis. Earth Syst. Sci. Data, 7, 157171, https://doi.org/10.5194/essd-7-157-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies. Bull. Amer. Meteor. Soc., 91, 1320, https://doi.org/10.1175/2009BAMS2891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., Z. Yan, N. Freychet, and Z. Li, 2020: Trends in summer heatwaves in central Asia from 1917 to 2016: Association with large-scale atmospheric circulation patterns. Int. J. Climatol., 40, 115127, https://doi.org/10.1002/joc.6197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., A. K. Macalady, L. R. Bonneau, and R. B. Smith, 2006: Europe’s 2003 heat wave: A satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol., 26, 743769, https://doi.org/10.1002/joc.1280.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1218 0 0
Full Text Views 5852 2676 213
PDF Downloads 3992 1297 117