Terrestrial Evaporation and Global Climate: Lessons from Northland, a Planet with a Hemispheric Continent

Marysa M. Laguë Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California
University of Saskatchewan Coldwater Lab, Canmore, Alberta, Canada

Search for other papers by Marysa M. Laguë in
Current site
Google Scholar
PubMed
Close
,
Marianne Pietschnig Department of Mathematics, University of Exeter, Exeter, United Kingdom

Search for other papers by Marianne Pietschnig in
Current site
Google Scholar
PubMed
Close
,
Sarah Ragen School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Sarah Ragen in
Current site
Google Scholar
PubMed
Close
,
Timothy A. Smith Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Timothy A. Smith in
Current site
Google Scholar
PubMed
Close
, and
David S. Battisti Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by David S. Battisti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0452.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marysa M. Laguë, mlague@uw.edu

Abstract

Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0452.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marysa M. Laguë, mlague@uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 783.28 KB)
Save
  • Abbot, D. S., A. Voigt, D. Li, G. L. Hir, R. T. Pierrehumbert, M. Branson, D. Pollard, and D. D. B. Koll, 2013: Robust elements of Snowball Earth atmospheric circulation and oases for life. J. Geophys. Res. Atmos., 118, 60176027, https://doi.org/10.1002/jgrd.50540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwood, A. R., A. Donohoe, D. S. Battisti, X. Liu, and F. S. R. Pausata, 2020: Robust longitudinally-variable responses of the ITCZ to a myriad of climate forcings. Geophys. Res. Lett., 47, e2020GL088833, https://doi.org/10.1029/2020GL088833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Ecological Climatology. Cambridge University Press, 563 pp.

    • Crossref
    • Export Citation
  • Bonan, G. B., 2016: Ecological Climatology. 3rd ed. Cambridge University Press, 692 pp., https://doi.org/10.1017/CBO9781107339200.

    • Crossref
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, https://doi.org/10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boynton, W. V., and Coauthors, 2002: Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 8185, https://doi.org/10.1126/science.1073722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1961: The heat balance of the Earth’s surface. Sov. Geogr., 2, 313, https://doi.org/10.1080/00385417.1961.10770761.

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 507 pp.

  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canadell, A. J., R. B. Jackson, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. Schulze, 1996: Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583595, https://doi.org/10.1007/BF00329030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and S. D. Goldenberg, 1981: The effect of ocean heat capacity upon global warming due to increasing atmospheric carbon dioxide. J. Geophys. Res., 86, 498502, https://doi.org/10.1029/JC086iC01p00498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202, https://doi.org/10.1002/qj.49710142802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/SCIADV.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, M. H., A. R. Yang, E. H. Baek, S. M. Kang, S. J. Jeong, J. Y. Kim, and B. M. Kim, 2018: Vegetation–cloud feedbacks to future vegetation changes in the Arctic regions. Climate Dyn., 50, 37453755, https://doi.org/10.1007/s00382-017-3840-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croll, J., 1870: On ocean-currents. London Edinburgh Dublin Philos. Mag. J. Sci., 39, 81106, https://doi.org/10.1080/14786447008640278.

  • Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, https://doi.org/10.1175/2009JCLI3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, https://doi.org/10.1175/2011JCLI3946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the Last Glacial Maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 (3), 123.

  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, https://doi.org/10.1175/2007JCLI1936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, W. C., and Coauthors, 2004: Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. Planets, 109, E09006, https://doi.org/10.1029/2003JE002160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, https://doi.org/10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorella, R. P., and C. J. Poulsen, 2013: Dehumidification over tropical continents reduces climate sensitivity and inhibits snowball Earth initiation. J. Climate, 26, 96779695, https://doi.org/10.1175/JCLI-D-12-00820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., and D. Ferreira, 2019: Global ocean heat transport dominated by heat export from the tropical Pacific. Nat. Geosci., 12, 351354, https://doi.org/10.1038/s41561-019-0333-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geen, R., F. H. Lambert, and G. K. Vallis, 2018: Regime change behavior during Asian monsoon onset. J. Climate, 31, 33273348, https://doi.org/10.1175/JCLI-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geen, R., S. Bordoni, D. S. Battisti, and K. Hui, 2020: Monsoons, ITCZs and the concept of the global monsoon. Rev. Geophys., 58, e2020RG000700, https://doi.org/10.1029/2020RG000700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C. R., and Coauthors, 2020: Array programming with NumPy. Nature, 585, 357362, https://doi.org/10.1038/s41586-020-2649-2.

  • Hartmann, D. L., 1994: Global Physical Climatology. Vol. 56, Academic Press, 411 pp.

  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., P. L. Panetta, and R. T. Pierrehumbert, 1985: Stationary external Rossby waves in vertical shear. J. Atmos. Sci., 42, 865883, https://doi.org/10.1175/1520-0469(1985)042<0865:SERWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998: A Neoproterozoic Snowball Earth. Science, 281, 13421346, https://doi.org/10.1126/science.281.5381.1342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., and Coauthors, 2017: Snowball Earth climate dynamics and Cryogenian geology–geobiology. Sci. Adv., 3, e1600983, https://doi.org/10.1126/sciadv.1600983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds, Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jeevanjee, N., P. Hassanzadeh, S. Hill, and A. Sheshadri, 2017: A perspective on climate model hierarchies. J. Adv. Model. Earth Syst., 9, 17601771, https://doi.org/10.1002/2017MS001038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith, and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, https://doi.org/10.1029/2004GL021180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalidindi, S., C. H. Reick, T. Raddatz, and M. Claussen, 2018: Two drastically different climate states on an Earth-like terra-planet. Earth Syst. Dyn., 9, 739756, https://doi.org/10.5194/esd-9-739-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., 2020: Extratropical influence on the tropical rainfall distribution. Curr. Climate Change Rep., 6, 2436, https://doi.org/10.1007/S40641-020-00154-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. E., M. M. Laguë, and A. L. S. Swann, 2020: Evaporative resistance is of equal importance as surface albedo in high-latitude surface temperatures due to cloud feedbacks. Geophys. Res. Lett., 47, e2019GL085663, https://doi.org/10.1029/2019GL085663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschvink, J. L., 1992: Late Proterozoic low-latitude global glaciation: The snowball earth. The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge University Press, 51–52.

  • Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018: Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Climate Change, 8, 434440, https://doi.org/10.1038/s41558-018-0144-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, https://doi.org/10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kump, L. R., J. F. Kasting, and R. G. Crane, 2004: The Earth System. 2nd ed., Pearson Prentice Hall, 419 pp.

  • Laguë, M. M., and A. L. Swann, 2016: Progressive midlatitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 55615573, https://doi.org/10.1175/JCLI-D-15-0748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., G. B. Bonan, and A. L. S. Swann, 2019: Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and uncoupled land–atmosphere system. J. Climate, 32, 57255744, https://doi.org/10.1175/JCLI-D-18-0812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levins, R., 1966: The strategy of model building in population biology. Amer. Sci., 5, 420431.

  • Loft, G., 1918: The Gulf Stream and the North Atlantic drift. J. Geog., 17, 817, https://doi.org/10.1080/00221341808984367.

  • Maher, P., and Coauthors, 2019: Model hierarchies for understanding atmospheric circulation. Rev. Geophy., 57, 250280, https://doi.org/10.1029/2018RG000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. Mon. Wea. Rev., 97, 739774, https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and T. B. Terpstra, 1974: The effect of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 342, https://doi.org/10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maroon, E. A., D. M. Frierson, S. M. Kang, and J. Scheff, 2016: The precipitation response to an idealized subtropical continent. J. Climate, 29, 45434564, https://doi.org/10.1175/JCLI-D-15-0616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and L. Zanna, 2014: A conceptual model of ocean heat uptake under climate change. J. Climate, 27, 84448465, https://doi.org/10.1175/JCLI-D-13-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and R. A. Plumb, 2007: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Academic Press, 344 pp.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMullin, E., 1985: Galilean idealization. Stud. Hist. Philos. Sci., 16, 247273, https://doi.org/10.1016/0039-3681(85)90003-2.

  • Milly, P. C. D., and B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor., 3, 283299, https://doi.org/10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, J., P. L. Langen, D. Ferreira, and J. Marshall, 2013: Ocean basin geometry and the salinification of the Atlantic Ocean. J. Climate, 26, 61636184, https://doi.org/10.1175/JCLI-D-12-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., J. G. Mengel, and D. A. Short, 1983: Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. J. Geophys. Res., 88, 65766586, https://doi.org/10.1029/JC088iC11p06576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 464 pp., https://doi.org/10.4324/9780203407219

    • Crossref
    • Export Citation
  • Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29, 959970, https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pietschnig, M., F. H. Lambert, M. Saint-Lu, and G. K. Vallis, 2019: The presence of Africa and limited soil moisture contribute to future drying of South America. Geophys. Res. Lett., 46, 12 44512 453, https://doi.org/10.1029/2019GL084441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626, https://doi.org/10.1175/1520-0477-29.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1980: Benjamin Franklin and Timothy Folger’s first printed chart of the Gulf Stream. Science, 207, 643645, https://doi.org/10.1126/science.207.4431.643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406, https://doi.org/10.1126/science.271.5254.1402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: Global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor., 8, 392400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the Earth’s climate. Science, 215, 14981501, https://doi.org/10.1126/science.215.4539.1498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikma, M., and J. Vilà-Guerau de Arellano, 2019: Substantial reductions in cloud cover and moisture transport by dynamic plant responses. Geophys. Res. Lett., 46, 18701878, https://doi.org/10.1029/2018GL081236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., S. Manabe, and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660662, https://doi.org/10.1038/342660a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor. Climatol., 27, 10361054, https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, https://doi.org/10.1073/pnas.1116706108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. I., and G. K. Vallis, 2019: Hierarchical modeling of solar system planets with Isca. Atmosphere, 10, 803, https://doi.org/10.3390/atmos10120803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and Coauthors, 2018: Isca, v1.0: A framework for the global modelling of the atmospheres of earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843859, https://doi.org/10.5194/gmd-11-843-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., 2013: The dynamics of the Snowball Earth Hadley circulation for off-equatorial and seasonally varying insolation. Earth Syst. Dyn., 4, 425438, https://doi.org/10.5194/esd-4-425-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., D. Abbot, R. Pierrehumbert, and J. Marotzke, 2011: Initiation of a Marinoan snowball Earth in a state-of-the-art atmosphere–ocean general circulation model. Climate Past, 7, 249263, https://doi.org/10.5194/cp-7-249-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., I. M. Held, and J. Marotzke, 2012: Hadley cell dynamics in a virtually dry snowball Earth atmosphere. J. Atmos. Sci., 69, 116128, https://doi.org/10.1175/JAS-D-11-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., S. Bony, J. L. Dufresne, and B. Stevens, 2014: The radiative impact of clouds on the shift of the intertropical convergence zone. Geophys. Res. Lett., 41, 43084315, https://doi.org/10.1002/2014GL060354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2016: The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780783, https://doi.org/10.1126/science.270.5237.780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H.-H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 17081725, https://doi.org/10.1029/2018MS001313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W., and S. Warren, 1980: A model for spectral albedo I: Pure snow. J. Atmos. Sci., 37, 27122733, https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wordsworth, R. D., 2016: The climate of early Mars. Annu. Rev. Earth Planet. Sci., 44, 381408, https://doi.org/10.1146/annurev-earth-060115-012355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worsley, T. R., and D. L. Kidder, 1991: First-order coupling of paleogeography and CO2, with global surface temperature and its latitudinal contrast. Geology, 19, 11611164, https://doi.org/10.1130/0091-7613(1991)019<1161:FOCOPA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, https://doi.org/10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarakas, C. M., A. L. Swann, M. M. Laguë, K. C. Armour, and J. T. Randerson, 2020: Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth system models. J. Climate, 33, 85618578, https://doi.org/10.1175/JCLI-D-20-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., D. A. Randall, M. J. Webb, and S. A. Klein, 2017: Clearing clouds of uncertainty. Nat. Climate Change, 7, 674678, https://doi.org/10.1038/nclimate3402.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 959 0 0
Full Text Views 2203 1263 123
PDF Downloads 902 207 32