• Adcroft, A., and et al. , 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assur, A., 1958: Composition of sea ice and its tensile strength. Arctic Sea Ice, U.S. National Academy of Sciences, 106–138.

  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batté, L., I. Välisuo, M. Chevallier, J. C. A. Navarro, P. Ortega, and D. Smith, 2020: Summer predictions of Arctic sea ice edge in multi-model seasonal re-forecasts. Climate Dyn., 54, 50135029, https://doi.org/10.1007/s00382-020-05273-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and et al. , 2020: 2019 Sea ice outlook full post-season report. https://www.arcus.org/sipn/sea-ice-outlook/2019/post-season.

  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677, https://doi.org/10.1029/1999JC900100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412463, https://doi.org/10.1029/1999JC000113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and K. A. Peterson, 2018: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere, 12, 34193438, https://doi.org/10.5194/tc-12-3419-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., M. Bushuk, and M. Winton, 2019: A spring barrier for regional predictions of summer Arctic sea ice. Geophys. Res. Lett., 46, 59375947, https://doi.org/10.1029/2019GL082947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and B. Light 2007: A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Tech. Note NCAR/TN-472+STR, 100 pp., https://doi.org/10.5065/D6B27S71.

    • Crossref
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 49534964, https://doi.org/10.1002/2017GL073155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. Vecchi, X. Yang, A. Rosati, and R. Gudgel, 2019a: Regional Arctic sea–ice prediction: Potential versus operational seasonal forecast. Climate Dyn., 52, 27212743, https://doi.org/10.1007/s00382-018-4288-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., X. Yang, M. Winton, R. Msadek, M. Harrison, A. Rosati, and R. Gudgel, 2019b: The value of sustained ocean observations for sea ice predictions in the Barents Sea. J. Climate, 32, 70177035, https://doi.org/10.1175/JCLI-D-19-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, A., M. Buehner, and T. Carrieres, 2010: Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice-ocean model. J. Atmos. Oceanic Technol., 27, 353369, https://doi.org/10.1175/2009JTECHO701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., S. Zhang, A. Rosati, T. L. Delworth, and W. F. Stern, 2013: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dyn., 40, 775803, https://doi.org/10.1007/s00382-012-1412-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Liu, M. Song, Q. Yang, and S. Xu, 2017: Impacts of assimilating satellite sea ice concentration and thickness on Arctic sea ice prediction in the NCEP Climate Forecast System. J. Climate, 30, 84298446, https://doi.org/10.1175/JCLI-D-17-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., D. Salas y Mélia, A. Voldoire, M. Déqué, and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, https://doi.org/10.1175/JCLI-D-12-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and et al. , 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

  • Danabasoglu, G., and et al. , 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate model. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2020: SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirkson, A., B. Denis, and W. J. Merryfield, 2019: A multimodel approach for improving seasonal probabilistic forecasts of regional Arctic sea ice. Geophys. Res. Lett., 46, 10 84410 853, https://doi.org/10.1029/2019GL083831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorel, L., C. Ardilouze, M. Déqué, L. Batté, and J. F. Guérémy, 2017: Documentation of the Météo-France pre-operational seasonal forecasting system. Météo-France Tech. Rep. 401, 36 pp., https://www.umr-cnrm.fr/IMG/pdf/system6-technical.pdf.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritzner, S., R. Graversen, K. H. Christensen, P. Rostosky, and K. Wang, 2019: Impact of assimilating sea ice concentration, sea ice thickness and snow depth in a coupled ocean–sea ice modeling system. Cryosphere, 13, 491509, https://doi.org/10.5194/tc-13-491-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and et al. , 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26 (1-2), 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanova, I., and et al. , 2015: Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optional approach using passive microwave observations. Cryosphere, 9, 17971817, https://doi.org/10.5194/tc-9-1797-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and et al. , 2019: SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev., 12, 10871117, https://doi.org/10.5194/gmd-12-1087-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimmritz, M., F. Counillon, C. M. Bitz, F. Massonnet, I. Bethke, and Y. Gao 2018: Optimising assimilation of sea ice concentration in an Earth system model with a multicategory sea ice model. Tellus, 70A (1), 123, https://doi.org/10.1080/16000870.2018.1435945.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and J. Zhang, 2006: Assimilation of ice concentration in an ice-ocean model. J. Atmos. Oceanic Technol., 23, 742749, https://doi.org/10.1175/JTECH1871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lisæter, K., J. Rosanova, and G. Evensen, 2003: Assimilation of ice concentration in a coupled ice–ocean model, using the ensemble Kalman filter. Ocean Dyn., 53, 368388, https://doi.org/10.1007/s10236-003-0049-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and et al. , 2019: Towards reliable Arctic sea ice prediction using multivariate data assimilation. Sci. Bull., 64, 6372, https://doi.org/10.1016/j.scib.2018.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, F., and et al. , 2020: GFDL’s SPEAR seasonal prediction system: Ocean data assimilation (ODA), ocean tendency adjustment (OTA) and coupled initialization. J. Adv. Model. Earth Syst., 12, e2020MS002149, https://doi.org/10.1029/2020MS002149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and et al. , 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, and H. Goosse, 2015: Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Modell., 88, 1625, https://doi.org/10.1016/j.ocemod.2014.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., C. K. Beatty, T. Fichefet, H. Goosse, F. Massonnet, and M. Vancoppenolle, 2012: Better constraints on the sea-ice state using global sea-ice data assimilation. Geosci. Model Dev., 5, 15011515, https://doi.org/10.5194/gmd-5-1501-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., 2005: Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in the Arctic peripheral seas. IEEE Trans. Geosci. Remote Sens., 43, 13241337, https://doi.org/10.1109/TGRS.2005.846151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and et al. , 2013: The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., G. A. Vecchi, M. Winton, and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, https://doi.org/10.1002/2014GL060799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, L., Q. Yang, M. Losch, S. N. Losa, R. Ricker, L. Nerger, and X. Liang, 2018: Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously. Quart. J. Roy. Meteor. Soc., 144, 529538, https://doi.org/10.1002/QJ.3225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, L., and et al. , 2020: Toward a data assimilation system for seamless sea ice prediction based on the AWI climate model. J. Adv. Model. Earth Syst., 12, e2019MS001937, https://doi.org/10.1029/2019MS001937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nerger, L., Q. Tang, and L. Mu, 2020: Efficient ensemble data assimilation for coupled models with parallel data assimilation framework: Example of AWI-CM (AWI-CM-PDAF 1.0). Geosci. Model Dev., 13, 43054321, https://doi.org/10.5194/gmd-13-4305-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raeder, K., J. L. Anderson, N. Collins, T. J. Hoar, J. E. Kay, P. H. Lauritzen, and R. Pincus, 2012: DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Climate, 25, 63046317, https://doi.org/10.1175/JCLI-D-11-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakov, P., F. Counillon, L. Bertino, K. A. Lisaeter, P. R. Oke, and A. Korablev, 2012: TOPAZ4: An ocean–sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci. Discuss., 9, 15191575, https://doi.org/10.5194/osd-9-1519-2012.

    • Search Google Scholar
    • Export Citation
  • Shlyaeva, A., M. Buehner, A. Caya, J.-F. Lemieux, G. C. Smith, F. Roy, F. Dupont, and T. Carrieres, 2016: Towards ensemble data assimilation for the Environment Canada Regional Ice Prediction System. Quart. J. Roy. Meteor. Soc., 142, 10901099, https://doi.org/10.1002/qj.2712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, https://doi.org/10.1002/grl.50129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. C., and et al. , 2015: Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Quart. J. Roy. Meteor. Soc., 142, 659671, https://doi.org/10.1002/qj.2555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stark, J. D., J. Ridley, M. Martin, and A. Hines, 2008: Sea ice concentration and motion assimilation in a sea ice–ocean model. J. Geophys. Res., 113, C05S91, https://doi.org/10.1029/2007JC004224.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2013: Assimilation of sea-ice concentration in a global climate model—Physical and statistical aspects. Ocean Sci., 9, 1936, https://doi.org/10.5194/os-9-19-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, K. Ogawa, T. Kuragano, H. Tsujino, and M. Kamachi, 2015: J. Oceanogr., 72, 235262, https://doi.org/10.1007/s10872-015-0326-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H. and et al. , 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 30, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and et al. , 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., J. Debernard, A. K. Sperrevik, P. E. Isachsen, and T. Lavergne, 2013: A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS. Ann. Glaciol., 54, 812, https://doi.org/10.3189/2013AoG62A138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forest system. Mon. Wea. Rev., 141, 13751394, https://doi.org/10.1175/MWR-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J., F. Counillon, L. Bertino, X. Tian-Kunze, and L. Kaleschke, 2016: Benefits of assimilating thin sea-ice thickness from SMOS-Ice into the TOPAZ system. Cryosphere, 10, 27452761, https://doi.org/10.5194/tc-10-2745-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., C. Wen, X. Yang, D. Behringer, A. Kumar, G. Vecchi, A. Rosati, and R. Gudgel, 2017: Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems. Climate Dyn., 49, 843868, https://doi.org/10.1007/s00382-015-2743-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., S. N. Losa, M. Losch, X. Tian-Kunze, L. Nerger, J. Liu, L. Kaleschke, and Z. Zhang, 2014: Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J. Geophys. Res. Oceans, 119, 66806692, https://doi.org/10.1002/2014JC009963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., S. N. Losa, M. Losch, T. Jung, and L. Nerger, 2015: The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction. Quart. J. Roy. Meteor. Soc., 141, 23142323, https://doi.org/10.1002/qj.2523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, L., H. F. Goessling, and T. Jung, 2018: Bright prospects for Arctic sea ice prediction on subseasonal time scales. Geophys. Res. Lett., 45, 97319738, https://doi.org/10.1029/2018GL079394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-F., T. J. Hoar, Z.-L. Yang, J. L. Anderson, A. M. Toure, and M. Rodell, 2014: Assimilation of MODIS snow cover through the data assimilation research testbed and the Community Land Model version 4. J. Geophys. Res. Atmos., 119, 70917103, https://doi.org/10.1002/2013JD021329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-F., C. M. Bitz, J. L. Anderson, N. Collins, J. Hendricks, T. Hoar, and K. Raeder, 2018: Insights on sea ice data assimilation from perfect model observing system simulation experiments. J. Climate, 31, 59115926, https://doi.org/10.1175/JCLI-D-17-0904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zygmuntowska, M., P. Rampal, N. Ivanova, and L. H. Smedsrud, 2014: Uncertainties in Arctic sea ice thickness and volume: New estimates and implications for trends. Cryosphere, 8, 705720, https://doi.org/10.5194/tc-8-705-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 167 167 33
Full Text Views 183 183 47
PDF Downloads 78 78 12

Assimilation of Satellite-Retrieved Sea Ice Concentration and Prospects for September Predictions of Arctic Sea Ice

View More View Less
  • 1 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • | 3 University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The current GFDL seasonal prediction system achieved retrospective sea ice extent (SIE) skill without direct sea ice data assimilation. Here we develop sea ice data assimilation, shown to be a key source of skill for seasonal sea ice predictions, in GFDL’s next-generation prediction system, the Seamless System for Prediction and Earth System Research (SPEAR). Satellite sea ice concentration (SIC) observations are assimilated into the GFDL Sea Ice Simulator version 2 (SIS2) using the ensemble adjustment Kalman filter (EAKF). Sea ice physics is perturbed to form an ensemble of ice–ocean members with atmospheric forcing from the JRA-55 reanalysis. Assimilation is performed every 5 days from 1982 to 2017 and the evaluation is conducted at pan-Arctic and regional scales over the same period. To mitigate an assimilation overshoot problem and improve the analysis, sea surface temperatures (SSTs) are restored to the daily Optimum Interpolation Sea Surface Temperature version 2 (OISSTv2). The combination of SIC assimilation and SST restoring reduces analysis errors to the observational error level (~10%) from up to 3 times larger than this (~30%) in the free-running model. Sensitivity experiments show that the choice of assimilation localization half-width (190 km) is near optimal and that SIC analysis errors can be further reduced slightly either by reducing the observational error or by increasing the assimilation frequency from every 5 days to daily. A lagged-correlation analysis suggests substantial prediction skill improvements from SIC initialization at lead times of less than 2 months.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0469.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong-Fei Zhang, yongfeiz@princeton.edu

Abstract

The current GFDL seasonal prediction system achieved retrospective sea ice extent (SIE) skill without direct sea ice data assimilation. Here we develop sea ice data assimilation, shown to be a key source of skill for seasonal sea ice predictions, in GFDL’s next-generation prediction system, the Seamless System for Prediction and Earth System Research (SPEAR). Satellite sea ice concentration (SIC) observations are assimilated into the GFDL Sea Ice Simulator version 2 (SIS2) using the ensemble adjustment Kalman filter (EAKF). Sea ice physics is perturbed to form an ensemble of ice–ocean members with atmospheric forcing from the JRA-55 reanalysis. Assimilation is performed every 5 days from 1982 to 2017 and the evaluation is conducted at pan-Arctic and regional scales over the same period. To mitigate an assimilation overshoot problem and improve the analysis, sea surface temperatures (SSTs) are restored to the daily Optimum Interpolation Sea Surface Temperature version 2 (OISSTv2). The combination of SIC assimilation and SST restoring reduces analysis errors to the observational error level (~10%) from up to 3 times larger than this (~30%) in the free-running model. Sensitivity experiments show that the choice of assimilation localization half-width (190 km) is near optimal and that SIC analysis errors can be further reduced slightly either by reducing the observational error or by increasing the assimilation frequency from every 5 days to daily. A lagged-correlation analysis suggests substantial prediction skill improvements from SIC initialization at lead times of less than 2 months.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0469.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong-Fei Zhang, yongfeiz@princeton.edu

Supplementary Materials

    • Supplemental Materials (PDF 607.92 KB)
Save