Cross-Basin Interactions between the Tropical Atlantic and Pacific in the ECMWF Hindcasts

Jing Ma Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jing Ma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3365-656X
,
Shang-Ping Xie Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Haiming Xu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Haiming Xu in
Current site
Google Scholar
PubMed
Close
,
Jiuwei Zhao Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

Search for other papers by Jiuwei Zhao in
Current site
Google Scholar
PubMed
Close
, and
Leying Zhang Joint Innovation Center for Modern Forestry Studies, College of Biology and Environment, Nanjing Forestry University, Nanjing, China

Search for other papers by Leying Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using the ensemble hindcasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) coupled model for the period of 1980–2005, spatiotemporal evolution in the covariability of sea surface temperature (SST) and low-level winds in the ensemble mean and spread over the tropical Atlantic is investigated with the month-reliant singular value decomposition (SVD) method, which treats the variables in a given monthly sequence as one time step. The leading mode of the ensemble mean represents a coevolution of SST and winds over the tropical Atlantic associated with a phase transition of El Niño from the peak to decay phase, while the second mode is related to a phase transition from El Niño to La Niña, indicating a precursory role of the north tropical Atlantic (NTA) SST warming in La Niña development. The leading mode of ensemble spread in SST and winds further illustrates that an NTA SST anomaly acts as a precursor for El Niño–Southern Oscillation (ENSO). A north-tropical pathway for the delayed effect of the NTA SST anomaly on the subsequent ENSO event is identified; the NTA SST warming induces the subtropical northeast Pacific SST cooling through the modulation of a zonal–vertical circulation, setting off a North Pacific meridional mode (NPMM). The coupled SST–wind anomalies migrate southwestward to the central equatorial Pacific and eventually amplify into a La Niña event in the following months due to the equatorial Bjerknes feedback. Ensemble spread greatly increases the sample size and affords insights into the interbasin interactions between the tropical Atlantic and Pacific, as demonstrated here in the NTA SST impact on ENSO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Ma, majingmarulai@163.com

Abstract

Using the ensemble hindcasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) coupled model for the period of 1980–2005, spatiotemporal evolution in the covariability of sea surface temperature (SST) and low-level winds in the ensemble mean and spread over the tropical Atlantic is investigated with the month-reliant singular value decomposition (SVD) method, which treats the variables in a given monthly sequence as one time step. The leading mode of the ensemble mean represents a coevolution of SST and winds over the tropical Atlantic associated with a phase transition of El Niño from the peak to decay phase, while the second mode is related to a phase transition from El Niño to La Niña, indicating a precursory role of the north tropical Atlantic (NTA) SST warming in La Niña development. The leading mode of ensemble spread in SST and winds further illustrates that an NTA SST anomaly acts as a precursor for El Niño–Southern Oscillation (ENSO). A north-tropical pathway for the delayed effect of the NTA SST anomaly on the subsequent ENSO event is identified; the NTA SST warming induces the subtropical northeast Pacific SST cooling through the modulation of a zonal–vertical circulation, setting off a North Pacific meridional mode (NPMM). The coupled SST–wind anomalies migrate southwestward to the central equatorial Pacific and eventually amplify into a La Niña event in the following months due to the equatorial Bjerknes feedback. Ensemble spread greatly increases the sample size and affords insights into the interbasin interactions between the tropical Atlantic and Pacific, as demonstrated here in the NTA SST impact on ENSO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing Ma, majingmarulai@163.com
Save
  • Amaya, D. J., and G. R. Foltz, 2014: Impacts of canonical and Modoki El Niño on tropical Atlantic SST. J. Geophys. Res. Oceans, 119, 777789, https://doi.org/10.1002/2013JC009476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., M. J. DeFlorio, A. J. Miller, and S.-P. Xie, 2017: WES feedback and the Atlantic meridional mode: Observations and CMIP5 comparisons. Climate Dyn., 49, 16651679, https://doi.org/10.1007/s00382-016-3411-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., Y. Kosaka, W. Zhou, Y. Zhang, S.-P. Xie, and A. Miller, 2019: The North Pacific pacemaker effect on historical ENSO and its mechanisms. J. Climate, 32, 76437661, https://doi.org/10.1175/JCLI-D-19-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Carton, J. A., and B. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24, 888903, https://doi.org/10.1175/1520-0485(1994)024<0888:WEITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic El Niño. Nature, 443, 324328, https://doi.org/10.1038/nature05053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J., and A. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, https://doi.org/10.1029/2000JD000307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, https://doi.org/10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 19651972, https://doi.org/10.1007/s00382-011-1097-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701, https://doi.org/10.1029/2006GL025871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D., and D. Mayer, 1997: Tropical Atlantic SST variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, https://doi.org/10.1029/96JC03296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2010: Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009. Geophys. Res. Lett., 37, L24605, https://doi.org/10.1029/2010GL045522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., M. J. McPhaden, and R. Lumpkin, 2012: A Strong Atlantic meridional mode event in 2009: The role of mixed layer dynamics. J. Climate, 25, 363380, https://doi.org/10.1175/JCLI-D-11-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, https://doi.org/10.1029/2011GL050520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Cassou, H. Douville, A. Giannini, and F. J. Doblas-Reyes, 2017: Revisiting the ENSO teleconnection to the tropical North Atlantic. J. Climate, 30, 69456957, https://doi.org/10.1175/JCLI-D-16-0641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, https://doi.org/10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. Chiang, M. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544, https://doi.org/10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 40124017, https://doi.org/10.1002/grl.50729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T.-C. Chang, and H.-H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 37153722, https://doi.org/10.1002/2013JD021394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-Y. Lee, H.-H. Hsu, N.-H. Lin, and B.-J. Tsuang, 2015: Tropical SST forcing on the anomalous WNP subtropical high during July–August 2010 and the record–high SST in the tropical Atlantic. Climate Dyn., 45, 633650, https://doi.org/10.1007/s00382-014-2275-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550567, https://doi.org/10.1175/2008JCLI2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., and L. Huo, 2018: Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 144, 14901500, https://doi.org/10.1002/qj.3296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., X. Li, S.-P. Xie, and H. Ueda, 2017: Atlantic effects on recent decadal trends in global monsoon. Climate Dyn., 49, 34433455, https://doi.org/10.1007/s00382-017-3522-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N. C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35, L04706, https://doi.org/10.1029/2007GL033037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, A. M. Tompkins, L. Feudale, P. Ruti, and A. Dell’Aquila, 2009: A Gill–Matsuno–type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135, 569579, https://doi.org/10.1002/qj.406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, https://doi.org/10.1002/grl.50571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Climate, 27, 70187032, https://doi.org/10.1175/JCLI-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329346, https://doi.org/10.1007/s00382-011-1274-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., R. Lu, and B. Dong, 2014: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 18291845, https://doi.org/10.1007/s00382-013-2010-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2007: The nonlinear transient atmospheric response to tropical forcing. J. Climate, 20, 56425665, https://doi.org/10.1175/2007JCLI1383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lintner, B., and J. Chiang, 2007: Adjustment of the remote tropical climate to El Niño conditions. J. Climate, 20, 25442557, https://doi.org/10.1175/JCLI4138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and H. Xu, 2017: Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 91679181, https://doi.org/10.1175/JCLI-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, https://doi.org/10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S.-P. Xie, 2006: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J. Climate, 19, 58595874, https://doi.org/10.1175/JCLI3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-H., T. Li, S.-W. Yeh, and H. Kim, 2019: Effect of recent Atlantic warming in strengthening Atlantic–Pacific teleconnection on interannual timescale via enhanced connection with the Pacific meridional mode. Climate Dyn., 53, 371387, https://doi.org/10.1007/s00382-018-4591-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, Y. Morioka, T. Doi, B. Taguchi, and S. Behera, 2017: Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dyn., 48, 36153629, https://doi.org/10.1007/s00382-016-3289-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impact: Summary of research and results from the ENSEMBLES Project. Met Office Hadley Centre, 160 pp.

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, https://doi.org/10.1029/2009GL040896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., L. Wu, Q. Liu, and S.-P. Xie, 2010: Development processes of the tropical Pacific meridional mode. Adv. Atmos. Sci., 27, 9599, https://doi.org/10.1007/s00376-009-8067-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Crossref
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, and J. Li, 2018: ENSO forced and local variability of north tropical Atlantic SST: Model simulations and biases. Climate Dyn., 51, 45114524, https://doi.org/10.1007/s00382-017-3679-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 861 0 0
Full Text Views 1822 941 55
PDF Downloads 459 118 8