• Chen, F., J. Wang, L. Jin, Q. Zhang, J. Li, and J. Chen, 2009: Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China, 3, 4250, https://doi.org/10.1007/s11707-009-0013-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and P. A. Stott, 2015: Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett., 42, 10 79810 806, https://doi.org/10.1002/2015GL066669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Coumou, D., G. D. Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA, 114, 48814886, https://doi.org/10.1073/pnas.1618082114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H. J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, https://doi.org/10.1002/joc.1615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164, https://doi.org/10.1175/2007JCLI1912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., M. Wang, Y. Lei, and Y. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J. Climate, 26, 261275, https://doi.org/10.1175/JCLI-D-11-00669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and P. Lin, 2011: Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J. Climate, 24, 55975603, https://doi.org/10.1175/JCLI-D-11-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. Manabe, and C. M. Johanson, 2011: On the warming in the tropical upper troposphere: Models versus observations. Geophys. Res. Lett., 38, L15704, https://doi.org/10.1029/2011GL048101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, Z., C. Sun, J. Li, J. Feng, F. Xie, R. Ding, Y. Yang, and J. Xue, 2020: An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales. Climate Dyn., 54, 807822, https://doi.org/10.1007/s00382-019-05031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. S. Whitaker, A. Kumar, and W. Wang, 2001: The midlatitude warming during 1998–2000. Geophys. Res. Lett., 28, 755758, https://doi.org/10.1029/2000GL012137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Curr. Climate Change Rep., 1, 115124, https://doi.org/10.1007/s40641-015-0020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., and Z. Yan, 1999: The East Asian summer monsoon circulation anomaly index and its interannual variations. Chin. Sci. Bull., 44, 13251329, https://doi.org/10.1007/BF02885855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., and H. Wang, 2005: Natural interdecadal weakening of East Asian summer monsoon in the late 20th century. Chin. Sci. Bull., 50, 19231929, https://doi.org/10.1360/982005-36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project : A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., S. Lee, H. Lopez, and M. Goes, 2020: Pacific mean-state control of Atlantic multidecadal oscillation–El Niño relationship. J. Climate, 33, 42734291, https://doi.org/10.1175/JCLI-D-19-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, O., F. Schenk, F. Feser, and R. Weisse, 2013: Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J. Climate, 26, 868874, https://doi.org/10.1175/JCLI-D-12-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, J. Hong, B. Dong, A. Duan, Q. Bao, and L. Zhou, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 11831195, https://doi.org/10.1007/s00382-012-1335-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100-mb summertime anticyclone over southern Asia. Mon. Wea. Rev., 91, 312, https://doi.org/10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and A. Hu, 2017: Internally generated and externally forced multidecadal oceanic modes and their influence on the summer rainfall over East Asia. J. Climate, 30, 82998316, https://doi.org/10.1175/JCLI-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stickler, A., and Coauthors, 2014: ERA-CLIM: Historical surface and upper-air data for future reanalyses. Bull. Amer. Meteor. Soc., 95, 14191430, https://doi.org/10.1175/BAMS-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stips, A., D. MacIas, C. Coughlan, E. Garcia-Gorriz, and X. S. Liang, 2016: On the causal structure between CO2 and global temperature. Sci. Rep., 6, 21691, https://doi.org/10.1038/srep21691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the boreal summer. Curr. Climate Change Rep., 5, 421432, https://doi.org/10.1007/s40641-019-00150-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, https://doi.org/10.1038/nclimate2341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., R. E. Davies, and R. R. Gillies, 2013: Identification of extreme precipitation threat across midlatitude regions based on short-wave circulations. J. Geophys. Res. Atmos., 118, 11 05911 074, https://doi.org/10.1002/jgrd.50841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 2006: The coupled monsoon system. The Asian Monsoon, B, Wang, Ed., Springer, 3–66.

    • Crossref
    • Export Citation
  • Wu, L., X. Feng, and M. Liang, 2017: Insensitivity of the summer South Asian high intensity to a warming Tibetan Plateau in modern reanalysis datasets. J. Climate, 30, 30093024, https://doi.org/10.1175/JCLI-D-16-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., C. P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. M. Zhang, 2006: Steady decline of East Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res., 111, D24111, https://doi.org/10.1029/2006JD007337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., K. Fan, and H. Wang, 2015: Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Climate, 28, 40864106, https://doi.org/10.1175/JCLI-D-14-00464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., and K. M. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol., 24, 16251644, https://doi.org/10.1002/joc.1094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, https://doi.org/10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, W. Qian, and B. Zhang, 2012: Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, https://doi.org/10.1029/2012GL051155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 14631473, https://doi.org/10.1007/s00382-010-0852-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 477 477 110
Full Text Views 70 70 33
PDF Downloads 80 80 34

The Contribution of Internal Variability to Asian Midlatitude Warming

View More View Less
  • 1 Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • 2 Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
  • 3 Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, China
© Get Permissions
Restricted access

Abstract

The tropospheric warming in the Northern Hemisphere (NH) midlatitudes has been an important factor in regulating weather and climate since the twentieth century. Apart from anthropogenic forcing leading to the midlatitude warming, this study investigates the possible contribution of internal variability to Asian midlatitude warming and its role in East Asian circulation changes in boreal summer, using four reanalysis datasets in the past century and a set of 1800-yr preindustrial control simulations of the Community Earth System Model version 1 large ensemble (CESM-LE). The surface and tropospheric warming in the Asian midlatitudes is associated with a strong upper-level geopotential height rise north of the Tibetan Plateau (TP). Linear trends of 200-hPa geopotential height (Z200) confirm a dipole of an anomalous high north of the TP and an anomalous low over the Iranian Plateau in 1958–2017. The leading internal circulation mode bears a striking resemblance to the Z200 trend in the past 60 and 111 years, indicating that the long-term trend may be partially of internal origin. The Asian midlatitude warming is also found in preindustrial simulations of CESM-LE, further suggesting that internal variability explains at least part of the temperature change in the Asian midlatitudes, which is in a chain of wave trains along the NH midlatitudes. The Asian warming decreases the meridional gradient of geopotential height, resulting in the weakening of westerly winds over the TP and the TP thermal forcing. Thus, it is essential to consider the role of internal variability in shaping East Asian surface temperature and East Asian summer monsoon changes in the past decades.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liguang Wu, liguangwu@fudan.edu.cn

Abstract

The tropospheric warming in the Northern Hemisphere (NH) midlatitudes has been an important factor in regulating weather and climate since the twentieth century. Apart from anthropogenic forcing leading to the midlatitude warming, this study investigates the possible contribution of internal variability to Asian midlatitude warming and its role in East Asian circulation changes in boreal summer, using four reanalysis datasets in the past century and a set of 1800-yr preindustrial control simulations of the Community Earth System Model version 1 large ensemble (CESM-LE). The surface and tropospheric warming in the Asian midlatitudes is associated with a strong upper-level geopotential height rise north of the Tibetan Plateau (TP). Linear trends of 200-hPa geopotential height (Z200) confirm a dipole of an anomalous high north of the TP and an anomalous low over the Iranian Plateau in 1958–2017. The leading internal circulation mode bears a striking resemblance to the Z200 trend in the past 60 and 111 years, indicating that the long-term trend may be partially of internal origin. The Asian midlatitude warming is also found in preindustrial simulations of CESM-LE, further suggesting that internal variability explains at least part of the temperature change in the Asian midlatitudes, which is in a chain of wave trains along the NH midlatitudes. The Asian warming decreases the meridional gradient of geopotential height, resulting in the weakening of westerly winds over the TP and the TP thermal forcing. Thus, it is essential to consider the role of internal variability in shaping East Asian surface temperature and East Asian summer monsoon changes in the past decades.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liguang Wu, liguangwu@fudan.edu.cn
Save