The Observed Relationship between Pacific SST Variability and Hadley Cell Extent Trends in Reanalyses

Michael Rollings Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Michael Rollings in
Current site
Google Scholar
PubMed
Close
and
Timothy M. Merlis Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reanalysis and other observationally based estimates suggest that the tropics have expanded more than simulated by coupled climate models with historical radiative forcing. Previous research has attempted to reconcile this discrepancy by using climate model simulations with constrained tropical Pacific sea surface temperatures (SSTs) to account for the role of internal variability. Here the relationships between Hadley cell extent and internal SST variability and long-term warming are analyzed using purely observational techniques. Using linearly independent components of SST variability with reanalysis datasets, the statistical relationship between Pacific variability and Hadley cell extent is quantified by time scale. There is a strong correlation between North Pacific decadal SST variability and Southern Hemisphere Hadley cell extent. Conversely, there is a weaker observed relation between El Niño–Southern Oscillation (ENSO) and Hadley cell extent when low-frequency variability is filtered out of the ENSO signal. The observed linear sensitivity of Hadley cell width to long-term warming agrees with coupled general circulation model experiments when accounting for uncertainties, and there is a statistically significant relationship between Northern Hemisphere Hadley cell extent and long-term warming during boreal autumn.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0410.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Rollings, michael.rollings@mcgill.ca

Abstract

Reanalysis and other observationally based estimates suggest that the tropics have expanded more than simulated by coupled climate models with historical radiative forcing. Previous research has attempted to reconcile this discrepancy by using climate model simulations with constrained tropical Pacific sea surface temperatures (SSTs) to account for the role of internal variability. Here the relationships between Hadley cell extent and internal SST variability and long-term warming are analyzed using purely observational techniques. Using linearly independent components of SST variability with reanalysis datasets, the statistical relationship between Pacific variability and Hadley cell extent is quantified by time scale. There is a strong correlation between North Pacific decadal SST variability and Southern Hemisphere Hadley cell extent. Conversely, there is a weaker observed relation between El Niño–Southern Oscillation (ENSO) and Hadley cell extent when low-frequency variability is filtered out of the ENSO signal. The observed linear sensitivity of Hadley cell width to long-term warming agrees with coupled general circulation model experiments when accounting for uncertainties, and there is a statistically significant relationship between Northern Hemisphere Hadley cell extent and long-term warming during boreal autumn.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0410.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Rollings, michael.rollings@mcgill.ca

Supplementary Materials

    • Supplemental Materials (PDF 1.93 MB)
Save
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, https://doi.org/10.1175/JCLI-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., and Coauthors, 2018: The TropD software package (v1): Standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 43394357, https://doi.org/10.5194/gmd-11-4339-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and O. Ajoku, 2016: Future aerosol reductions and widening of the northern tropical belt. J. Geophys. Res. Atmos., 121, 67656786, https://doi.org/10.1002/2016JD024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and M. Kovilakam, 2017: The role of natural climate variability in recent tropical expansion. J. Climate, 30, 63296350, https://doi.org/10.1175/JCLI-D-16-0735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., J. R. Norris, and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat. Geosci., 7, 270274, https://doi.org/10.1038/ngeo2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., N. Siler, S.-P. Xie, and A. J. Miller, 2018: The interplay of internal and forced modes of Hadley cell expansion: Lessons from the global warming hiatus. Climate Dyn., 51, 305319, https://doi.org/10.1007/s00382-017-3921-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., 2010: Significance tests in climate science. J. Climate, 23, 59275932, https://doi.org/10.1175/2010JCLI3746.1.

  • Bell, B., and Coauthors, 2020: ERA5 monthly averaged data on pressure levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service Climate Data Store (CDS), accessed 12 November 2020, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means-preliminary-back-extension?tab=overview.

  • Bellomo, K., L. N. Murphy, M. A. Cane, A. C. Clement, and L. M. Polvani, 2018: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Climate Dyn., 50, 36873698, https://doi.org/10.1007/s00382-017-3834-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., A. Mariotti, and S. Gualdi, 2017: The role of forcings in the twentieth-century Atlantic multidecadal variability: The 1940–75 North Atlantic cooling case study. J. Climate, 30, 73177337, https://doi.org/10.1175/JCLI-D-16-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C3S, 2019: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 30 September 2019, https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset.

  • C3S, 2020: ERA5 back extension 1950–1978 (preliminary version): Large bias in surface analysis over Australia prior to 1970. European Centre for Medium-Range Weather Forecasts, accessed 12 November 2020, https://confluence.ecmwf.int/display/CKB/ERA5+back+extension+1950-1978+%28preliminary+version%29%3A+large+bias+in+surface+analysis+over+Australia+prior+to+1970.

  • Chen, G., J. Lu, and D. M. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., K. Wei, W. Chen, and L. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos., 119, 78157832, https://doi.org/10.1002/2014JD021540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and J. M. Wallace, 2016: Orthogonal PDO and ENSO indices. J. Climate, 29, 38833892, https://doi.org/10.1175/JCLI-D-15-0684.1.

  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., and P. Lionello, 2017: Evidence of global warming impact on the evolution of the Hadley circulation in ECMWF centennial reanalyses. Climate Dyn., 48, 30473060, https://doi.org/10.1007/s00382-016-3250-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N. A., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N. A., and S. M. Davis, 2018: Reconciling Hadley cell expansion trend estimates in reanalyses. Geophys. Res. Lett., 45, 11 43911 446, https://doi.org/10.1029/2018GL079593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N. A., S. M. Davis, and D. W. Waugh, 2018: New insights into tropical belt metrics. U.S. CLIVAR Variations, No. 16, International CLIVAR Project Office, Southampton, United Kingdom, 1–7.

  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, https://doi.org/10.1175/JCLI-D-11-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017: The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environ. Res. Lett., 12, 034011, https://doi.org/10.1088/1748-9326/AA5DD8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and X. Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, 85708577, https://doi.org/10.1002/2014GL062269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2011: ERAI: The ERA-Interim reanalysis dataset. Copernicus Climate Change Service Climate Data Store (CDS), accessed 9 April 2019, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim.

  • ECMWF, 2016: ERA20C, monthly means of daily means, surface, analysis. European Centre for Medium-Range Weather Forecasts, accessed 2 November 2020, https://apps.ecmwf.int/datasets/data/era20c-moda/levtype=sfc/type=an/.

  • ECMWF, 2018: CERA20C, monthly means of daily means, surface, analysis. European Centre for Medium-Range Weather Forecasts, accessed 2 November 2020, https://apps.ecmwf.int/datasets/data/cera20c-edmo/levtype=sfc/type=an/.

  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys, 13, 1008110094, https://doi.org/10.5194/ACP-13-10081-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, https://doi.org/10.1002/2015GL066942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GISTEMP, 2020: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies, accessed 13 January 2020, https://data.giss.nasa.gov/gistemp/.

  • GMAO, 2015: MERRA-2 instM_3d_asm_Np: 3d, Monthly mean, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 23 July 2019, https://disc.gsfc.nasa.gov/datasets/M2IMNPASM_5.12.4/summary.

  • Grassi, B., G. Redaelli, P. O. Canziani, and G. Visconti, 2012: Effects of the PDO phase on the tropical belt width. J. Climate, 25, 32823290, https://doi.org/10.1175/JCLI-D-11-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and S. M. Davis, 2020: Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys., 20, 52495268, https://doi.org/10.5194/ACP-20-5249-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S. M. Davis, P. W. Staten, and O. Adam, 2018: Regional and seasonal characteristics of the recent expansion of the tropics. J. Climate, 31, 68396856, https://doi.org/10.1175/JCLI-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and Coauthors, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 15511571, https://doi.org/10.1175/JCLI-D-18-0444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://www.ecmwf.int/node/19027.

  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, https://doi.org/10.1007/s00376-012-2187-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017a: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017b: NOAA extended reconstructed sea surface temperature, version 5 (ERSSTv5). NOAA National Centers for Environmental Information, accessed 15 April 2019, https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html.

  • Huang, R., S. Chen, W. Chen, and P. Hu, 2018: Interannual variability of regional Hadley circulation intensity over western Pacific during boreal winter and its climatic impact over Asia-Australia region. J. Geophys. Res. Atmos., 123, 344366, https://doi.org/10.1002/2017JD027919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2013: JRA-55: Japanese 55-year reanalysis, monthly statistics. Japan Meteorological Agency (JMA) Data Dissemination System (JDDS), accessed 28 September 2019, https://jra.kishou.go.jp/JRA-55/index_en.html#references.

  • Karnauskas, K. B., and C. C. Ummenhofer, 2014: On the dynamics of the Hadley circulation and subtropical drying. Climate Dyn., 42, 22592269, https://doi.org/10.1007/s00382-014-2129-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., J. P. Donnelly, and K. J. Anchukaitis, 2016: Future freshwater stress for island populations. Nat. Climate Change, 6, 720725, https://doi.org/10.1038/nclimate2987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., C.-F. Schleussner, J. P. Donnelly, and K. J. Anchukaitis, 2018: Freshwater stress on small island developing states: Population projections and aridity changes at 1.5 and 2°C. Reg. Environ. Change, 18, 22732282, https://doi.org/10.1007/s10113-018-1331-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, S.-W. Son, and J. Choi, 2017: Attribution of the local Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 44, 10151024, https://doi.org/10.1002/2016GL072353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., and Coauthors, 2018: CERA-20c: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, https://doi.org/10.1073/pnas.1418682112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 63076326, https://doi.org/10.1029/2018JD029522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, https://doi.org/10.1175/2008JCLI2200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res. Atmos., 120, 68096824, https://doi.org/10.1002/2015JD023130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, https://doi.org/10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., S. Sherwood, R. Allen, and L. Shi, 2017: Natural variations of tropical width and recent trends. Geophys. Res. Lett., 44, 38253832, https://doi.org/10.1002/2016GL072097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2018: Linking Hadley circulation and storm tracks in a conceptual model of the atmospheric energy balance. J. Atmos. Sci., 75, 841856, https://doi.org/10.1175/JAS-D-17-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, M. E., D. Waugh, and K. Grise, 2019: Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophys. Res. Lett., 46, 70457053, https://doi.org/10.1029/2019GL083345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., and S.-W. Son, 2013: Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. J. Geophys. Res. Atmos., 118, 30073015, https://doi.org/10.1002/jgrd.50232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, L. N., K. Bellomo, M. Cane, and A. Clement, 2017: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett., 44, 24722480, https://doi.org/10.1002/2016GL071337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • NCEI, 2020: Pacific Decadal Oscillation. NOAA National Centers for Environmental Information, accessed 31 August 2020, https://www.ncdc.noaa.gov/teleconnections/pdo/.

  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857, https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evans, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, https://doi.org/10.1175/JCLI-D-12-00224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., C. Lucas, A. Evans, B. Timbal, and L. Hanson, 2015: Expansion of the Southern Hemisphere Hadley cell in response to greenhouse gas forcing. J. Climate, 28, 80678077, https://doi.org/10.1175/JCLI-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., 2001: Distinguishing coupled ocean–atmosphere interactions from background noise in the North Pacific. Prog. Oceanogr., 49, 331352, https://doi.org/10.1016/S0079-6611(01)00029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, D. A., B. Timbal, F. H. Chiew, H. H. Hendon, H. Nguyen, and R. Moran, 2014: Decrease in southeastern Australian water availability linked to ongoing Hadley cell expansion. Earth’s Future, 2, 231238, https://doi.org/10.1002/2013EF000194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PSL, 2020: Monthly NOAA-CIRES-DOE 20th century reanalysis V3: Monolevel variables. NOAA Physical Sciences Laboratory (PSL), accessed 4 November 2020, https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html.

  • Quan, X.-W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, https://doi.org/10.1175/JCLI-D-13-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. Frierson, 2012: Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Climate, 25, 43304347, https://doi.org/10.1175/JCLI-D-11-00393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, https://doi.org/10.1175/JCLI3527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and I. M. Held, 2001: Discriminants of twentieth-century changes in Earth surface temperatures. J. Climate, 14, 249254, https://doi.org/10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., G. C. Hegerl, and S. P. Obrochta, 2015: Determining the likelihood of pauses and surges in global warming. Geophys. Res. Lett., 42, 59745982, https://doi.org/10.1002/2015GL064458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, https://doi.org/10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., D. M. Frierson, and J.-H. Son, 2014: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett., 41, 52515258, https://doi.org/10.1002/2014GL060868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I., 2018: Natural variability in the width of the tropics. U.S. CLIVAR Variations, No. 16, International CLIVAR Project Office, Southampton, United Kingdom, 14–20.

  • Simpson, I., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis System. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. Lu, K. M. Grise, S. M. Davis, and T. Birner, 2018: Re-examining tropical expansion. Nat. Climate Change, 8, 768775, https://doi.org/10.1038/s41558-018-0246-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., K. M. Grise, S. M. Davis, K. Karnauskas, and N. Davis, 2019: Regional widening of tropical overturning: Forced change, natural variability, and recent trends. J. Geophys. Res. Atmos., 124, 61046119, https://doi.org/10.1029/2018JD030100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. I., 2006: Reversal of the trend in global anthropogenic sulfur emissions. Global Environ. Change, 16, 207220, https://doi.org/10.1016/j.gloenvcha.2006.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, https://doi.org/10.1175/JCLI-D-12-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., Y. Hu, and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, https://doi.org/10.1007/s00382-015-2772-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watt-Meyer, O., D. M. W. Frierson, and Q. Fu, 2019: Hemispheric asymmetry of tropical expansion under CO2 forcing. Geophys. Res. Lett., 46, 92319240, https://doi.org/10.1029/2019GL083695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., C. I. Garfinkel, and L. M. Polvani, 2015: Drivers of the recent tropical expansion in the Southern Hemisphere: Changing SSTs or ozone depletion? J. Climate, 28, 65816586, https://doi.org/10.1175/JCLI-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., 2016: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdiscip. Rev.: Climate Change, 7, 91107, https://doi.org/10.1002/wcc.372.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., T. Schneider, J. M. Wallace, D. S. Battisti, and D. L. Hartmann, 2018: Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophys. Res. Lett., 45, 24872496, https://doi.org/10.1002/2017GL076327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., J. Lu, Y. Hu, and M. D. Zelinka, 2020: Responses of the Hadley circulation to regional sea surface temperature changes. J. Climate, 33, 429441, https://doi.org/10.1175/JCLI-D-19-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and P. Álvarez Zapatero, 2018: Coupled interannual variability of the Hadley and Ferrel cells. J. Climate, 31, 47574773, https://doi.org/10.1175/JCLI-D-17-0752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 897 0 0
Full Text Views 702 222 17
PDF Downloads 566 173 10