Decadal Modulation of the ENSO–Indian Ocean Basin Warming Relationship during the Decaying Summer by the Interdecadal Pacific Oscillation

Fangyu Liu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Fangyu Liu in
Current site
Google Scholar
PubMed
Close
,
Wenjun Zhang Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Wenjun Zhang in
Current site
Google Scholar
PubMed
Close
,
Fei-Fei Jin Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Fei-Fei Jin in
Current site
Google Scholar
PubMed
Close
, and
Suqiong Hu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Suqiong Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many previous studies have shown that an Indian Ocean basin warming (IOBW) occurs usually during El Niño–Southern Oscillation (ENSO) decaying spring to summer seasons through modifying the equatorial zonal circulation. Decadal modulation associated with the interdecadal Pacific oscillation (IPO) is further investigated here to understand the nonstationary ENSO–IOBW relationship during ENSO decaying summer (July–September). During the positive IPO phase, significant warm sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean in El Niño decaying summers and vice versa for La Niña events, while these patterns are not well detected in the negative IPO phase. Different decaying speeds of ENSO associated with the IPO phase, largely controlled by both zonal advective and thermocline feedbacks, are suggested to be mainly responsible for these different ENSO–IOBW relationships. In contrast to ENSO events in the negative IPO phase, the ones in the positive IPO phase display a slower decaying speed and delay their transitions both from a warm to a cold state and a cold to a warm state. The slower decay of El Niño and La Niña thereby helps to sustain the teleconnection forcing over the equatorial Indian Ocean and corresponding SST anomalies there can persist into summer. This IPO modulation of the ENSO–IOBW relationship carries important implications for the seasonal prediction of the Indian Ocean SST anomalies and associated summer climate anomalies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenjun Zhang, zhangwj@nuist.edu.cn

Abstract

Many previous studies have shown that an Indian Ocean basin warming (IOBW) occurs usually during El Niño–Southern Oscillation (ENSO) decaying spring to summer seasons through modifying the equatorial zonal circulation. Decadal modulation associated with the interdecadal Pacific oscillation (IPO) is further investigated here to understand the nonstationary ENSO–IOBW relationship during ENSO decaying summer (July–September). During the positive IPO phase, significant warm sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean in El Niño decaying summers and vice versa for La Niña events, while these patterns are not well detected in the negative IPO phase. Different decaying speeds of ENSO associated with the IPO phase, largely controlled by both zonal advective and thermocline feedbacks, are suggested to be mainly responsible for these different ENSO–IOBW relationships. In contrast to ENSO events in the negative IPO phase, the ones in the positive IPO phase display a slower decaying speed and delay their transitions both from a warm to a cold state and a cold to a warm state. The slower decay of El Niño and La Niña thereby helps to sustain the teleconnection forcing over the equatorial Indian Ocean and corresponding SST anomalies there can persist into summer. This IPO modulation of the ENSO–IOBW relationship carries important implications for the seasonal prediction of the Indian Ocean SST anomalies and associated summer climate anomalies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenjun Zhang, zhangwj@nuist.edu.cn
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27, 25732576, https://doi.org/10.1029/1999GL011090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., J. S. Chowdary, and C. Gnanaseelan, 2012: Spring asymmetric mode in the tropical Indian Ocean: Role of El Niño and IOD. Climate Dyn., 40, 14671481, https://doi.org/10.1007/s00382-012-1340-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., T. Li, X. Shen, and B. Wu, 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 22012220, https://doi.org/10.1175/JCLI-D-15-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., B. Dong, and R. Lu, 2010: Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. J. Geophys. Res., 115, D17109, https://doi.org/10.1029/2009JD013596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, H. Tokinaga, Y. M. Okumura, H. Kubota, N. Johnson, and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo–western Pacific for 1870–2007. J. Climate, 25, 17221744, https://doi.org/10.1175/JCLI-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, C. Gnanaseelan, and P. Sreenivas, 2014: Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño. Global Planet. Change, 112, 3340, https://doi.org/10.1016/j.gloplacha.2013.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, Y.-L. Yang, X.-T. Zheng, L. Liu, and G. Huang, 2013: Indian Ocean variability in the CMIP5 multimodel ensemble: The basin mode. J. Climate, 26, 72407266, https://doi.org/10.1175/JCLI-D-12-00678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, https://doi.org/10.1126/science.288.5473.1997.

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 30863101, https://doi.org/10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, P. Liu, F.-F. Jin, and G. Tan, 2017: Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Climate Dyn., 49, 25312544, https://doi.org/10.1007/s00382-016-3465-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, F.-F. Jin, and M. F. Stuecker, 2018: A new method for interpreting nonstationary running correlations and its application to the ENSO–EAWM relationship. Geophys. Res. Lett., 45, 327334, https://doi.org/10.1002/2017GL076564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and N. K. Larkin, 1996: The COADS sea level pressure signal: A near-global El Niño composite and time series view, 1946–1993. J. Climate, 9, 30253055, https://doi.org/10.1175/1520-0442(1996)009<3025:TCSLPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hu, S., and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nat. Climate Change, 8, 798802, https://doi.org/10.1038/s41558-018-0248-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. Hu, and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, https://doi.org/10.1175/2010JCLI3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, https://doi.org/10.1029/1999GL002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., H. No, and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, https://doi.org/10.1175/JCLI-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129, 16231646, https://doi.org/10.1256/qj.01.166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, R., F. Zheng, and X. Dong, 2018: ENSO frequency asymmetry and the Pacific decadal oscillation in observations and 19 CMIP5 models. Adv. Atmos. Sci., 35, 495506, https://doi.org/10.1007/s00376-017-7133-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., W. Chen, and B. Dong, 2008: How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO–South Asian summer monsoon interaction? Geophys. Res. Lett., 35, L08706, https://doi.org/10.1029/2008GL033394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1997: The South Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 19211943, https://doi.org/10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and H.-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657676, https://doi.org/10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S. P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 43974417, https://doi.org/10.1175/JCLI3847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, K. Hu, X. Qu, G. Wen, and H. Gong, 2015: Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their relationship under global warming in CMIP5 models. Int. J. Climatol., 35, 391407, https://doi.org/10.1002/joc.3987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-I. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Climate Dyn., 18, 475486, https://doi.org/10.1007/s00382-001-0189-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Yang, T. Zhou, and B. Wang, 2008: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, https://doi.org/10.1175/2007JCLI1981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, T., and K. Yamazaki, 2014: Decadal-scale variation of South Asian summer monsoon onset and its relationship with the Pacific decadal oscillation. J. Climate, 27, 51635173, https://doi.org/10.1175/JCLI-D-13-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1979: A statistical study of the relationships between ocean surface temperatures and the Indian monsoon. J. Atmos. Sci., 36, 22792291, https://doi.org/10.1175/1520-0469(1979)036<2279:ASSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S.-W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, D08101, https://doi.org/10.1029/2009JD012999.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, https://doi.org/10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. Mccreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Yu, D. U. Yan, H. U. Kaiming, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, Y. Du, and H. Tokinaga, 2015: Interdecadal difference of interannual variability characteristics of South China Sea SSTs associated with ENSO. J. Climate, 28, 71457160, https://doi.org/10.1175/JCLI-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, S.-H., S. Yang, and C.-H. Ho, 2006: Variability of the Indian Ocean sea surface temperature and its impacts on Asian-Australian monsoon climate. J. Geophys. Res., 111, D03108, https://doi.org/10.1029/2005JD006001.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and K. M. Lau, 2004: Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere–ocean GCM study. Meteor. Atmos. Phys., 90, 179191, https://doi.org/10.1007/s00703-004-0094-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J.-X. Zhao, and J. Li, 2013: On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J. Climate, 26, 31733186, https://doi.org/10.1175/JCLI-D-12-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., H. Li, M. F. Stuecker, F.-F. Jin, and A. G. Turner, 2016: A new understanding of El Niño’s impact over East Asia: Dominance of the ENSO combination mode. J. Climate, 29, 43474359, https://doi.org/10.1175/JCLI-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 661 0 0
Full Text Views 1865 1012 62
PDF Downloads 754 263 39