• Altmann, A., L. Toloşi, O. Sander, and T. Lengauer, 2010: Permutation importance: A corrected feature importance measure. Bioinformatics, 26, 13401347, https://doi.org/10.1093/bioinformatics/btq134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., R. Murtugudde, and A. J. Busalacchi, 2002: On the potential impact of sea surface salinity observations on ENSO predictions. J. Geophys. Res., 107, 8007, https://doi.org/10.1029/2001JC000834.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Cai, W., T. Cowan, and A. Sullivan, 2009: Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705, https://doi.org/10.1029/2009GL037604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, https://doi.org/10.1175/JCLI-D-11-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., H. Qin, G. Chen, and H. Xue, 2019: Ocean salinity as a precursor of summer rainfall over the East Asian monsoon region. J. Climate, 32, 56595676, https://doi.org/10.1175/JCLI-D-18-0756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., M. Li, and W. Wang, 2012: Statistical uncertainty estimation using random forests and its application to drought forecast. Math. Probl. Eng., 2012, 915053, https://doi.org/10.1155/2012/915053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. H. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, P., and V. Pandey, 2019: Use of logistic regression in land-cover classification with moderate-resolution multispectral data. J. Indian Soc. Remote Sens., 47, 14431454, https://doi.org/10.1007/S12524-019-00986-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., C. Henin, V. Porte, and P. Arkin, 1996: Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep-Sea Res. I, 43, 11231141, https://doi.org/10.1016/0967-0637(96)00048-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2011: An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability. Climate Dyn., 36, 21292145, https://doi.org/10.1007/s00382-010-0787-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and I. Boyer-Souchet, 2012: Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett., 39, L10803, https://doi.org/10.1029/2012GL052014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., A. J. Pitman, and F. T. Cruz, 2011: Coupled atmospheric and land surface dynamics over southeast Australia: A review, analysis and identification of future research priorities. Int. J. Climatol., 31, 17581772, https://doi.org/10.1002/joc.2206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., X. Meng, and M. F. McCabe, 2017: Land surface albedo and vegetation feedbacks enhanced the millennium drought in south-east Australia. Hydrol. Earth Syst. Sci., 21, 409422, https://doi.org/10.5194/hess-21-409-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, https://doi.org/10.1029/2003JD004345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firth, L., M. L. Hazelton, and E. P. Campbell, 2005: Predicting the onset of Australian winter rainfall by nonlinear classification. J. Climate, 18, 772781, https://doi.org/10.1175/JCLI-3291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, S. M., and M. D. Behera, 2018: Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Appl. Geogr., 96, 2940, https://doi.org/10.1016/j.apgeog.2018.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I. 57, 812833, https://doi.org/10.1016/j.dsr.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunseich, G., B. Subrahmanyam, V. S. N. Murty, B. S. Giese, 2011: Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean. J. Geophys. Res., 116, C11013, https://doi.org/10.1029/2011JC007456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackert, E. C., R. M. Kovach, A. J. Busalacchi, and J. Ballabrera-Poy, 2019: Impact of Aquarius and SMAP satellite sea surface salinity observations on coupled El Niño/Southern Oscillation forecasts. J. Geophys. Res. Oceans, 124, 45464556, https://doi.org/10.1029/2019JC015130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halgamuge, M. N., and A. Nirmalathas, 2017: Analysis of large flood events: Based on flood data during 1985–2016 in Australia and India. Int. J. Disaster Risk Reduct., 24, 111, https://doi.org/10.1016/j.ijdrr.2017.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, J., and A. Goonetilleke, 2013: Building community resilience—Learning from the 2011 floods in southeast Queensland, Australia. Eighth Annual Conf. of the International Institute for Infrastructure, Renewal and Reconstruction: Int. Conf. on Disaster Management (IIIRR 2012), IIIRR, 51–60, https://www.civil.kumamoto-u.ac.jp/kakimoto/iiirr/.

  • Hendon, H. H., N. E. Davidson, and B. Gunn, 1989: Australian summer monsoon onset during AMEX 1987. Mon. Wea. Rev., 117, 370390, https://doi.org/10.1175/1520-0493(1989)117<0370:ASMODA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, J. M. Arblaster, and D. L. T. Anderson, 2014: Causes and predictability of the record wet east Australian spring 2010. Climate Dyn., 42, 11551174, https://doi.org/10.1007/s00382-013-1700-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, C., 2012: Queensland Floods Commission of Inquiry. Queensland Floods Commission of Inquiry Rep., 658 pp., https://www.floodcommission.qld.gov.au/publications/final-report/.

  • Hu, P., Q. Zhang, P. Shi, B. Chen, and J. Fang, 2018: Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Environ., 643, 171182, https://doi.org/10.1016/J.SCITOTENV.2018.06.197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and et al. , 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B. T., M. Ting, R. Seager, and W. B. Anderson, 2020: ENSO teleconnections and impacts on U.S. summertime temperature during a multiyear La Niña life cycle. J. Climate, 33, 60096024, https://doi.org/10.1175/JCLI-D-19-0701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kido, S., T. Tozuka, and W. Han, 2019: Anatomy of salinity anomalies associated with the positive Indian Ocean dipole. J. Geophys. Res. Oceans, 124, 81168139, https://doi.org/10.1029/2019JC015163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., M. G. Donat, L. V. Alexander, and D. J. Karoly, 2015: The ENSO-Australian rainfall teleconnection in reanalysis and CMIP5. Climate Dyn., 44, 26232635, https://doi.org/10.1007/s00382-014-2159-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and A. P. Barros, 2013: Atmospheric moisture budget and its regulation of the summer precipitation variability over the southeastern United States. Climate Dyn., 41, 613631, https://doi.org/10.1007/s00382-013-1697-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016a: Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Climate, 29, 31433159, https://doi.org/10.1175/JCLI-D-15-0520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016b: North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv., 2, e1501588, https://doi.org/10.1126/sciadv.1501588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., and H. H. Hendon, 2015: Understanding and predicting the strong southern annular mode and its impact on the record wet east Australian spring 2010. Climate Dyn., 44, 28072824, https://doi.org/10.1007/s00382-014-2400-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1988: Deducing the wind from vorticity and divergence. Mon. Wea. Rev., 116, 8693, https://doi.org/10.1175/1520-0493(1988)116<0086:DTWFVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 19982004, https://doi.org/10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConochie, J. D., T. A. Hardy, and L. B. Mason, 2004: Modelling tropical cyclone over-water wind and pressure fields. Ocean Eng., 31, 17571782, https://doi.org/10.1016/j.oceaneng.2004.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mogensen, K., M. Alonso, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Tech. Memo. 668, 59 pp., https://www.ecmwf.int/sites/default/files/elibrary/2012/11174-nemovar-ocean-data-assimilation-system-implemented-ecmwf-ocean-analysis-system-4.pdf.

  • NCCARF, 2012: Protecting structures from floodwater. NCCARF Fact Sheet FS-2/2012, 2 pp., https://nccarf.edu.au/wp-content/uploads/2019/03/ProtectingStructuresfromFloodwater-factsheet_0.pdf.

  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2001: Commentary and analysis: The insignificance of significance testing. Bull. Amer. Meteor. Soc., 82, 981986, https://doi.org/10.1175/1520-0477(2001)082<0981:CAATIO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noi, P. T., J. Degener, and M. Kappas, 2017: Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens., 9, 398, https://doi.org/10.3390/rs9050398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, M., J. V. Ratnam, M. Nonaka, and S. K. Behera, 2020: Long-lead prediction of ENSO Modoki index using machine learning algorithms. Sci. Rep., 10, 365, https://doi.org/10.1038/s41598-019-57183-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M. J., J. S. Risbey, C. C. Ummenhofer, P. R. Briggs, and T. J. Cohen, 2014: A synoptic climatology of heavy rain events in the Lake Eyre and Lake Frome catchments. Front. Environ. Sci., 2, 18, https://doi.org/10.3389/fenvs.2014.00054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., and et al. , 1998: Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: Coherent variability and recent changes. Aust. Meteor. Mag., 47, 85101.

    • Search Google Scholar
    • Export Citation
  • Power, S., F. Tseitkin, V. Mehta, B. Lavery, S. Torok, and N. Holbrook, 1999: Decadal climate variability in Australia during the twentieth century. Int. J. Climatol., 19, 169184, https://doi.org/10.1002/(SICI)1097-0088(199902)19:2<169::AID-JOC356>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., M. Haylock, R. Colman, and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19, 47554771, https://doi.org/10.1175/JCLI3868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, C. C. Ummenhofer, H. E. Phillips, and M. Feng, 2020: Near-surface salinity reveals the oceanic sources of moisture for Australian precipitation through atmospheric moisture transport. J. Climate, 33, 67076730, https://doi.org/10.1175/JCLI-D-19-0579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., P. R. Briggs, V. Haverd, E. A. King, M. Paget, and C. M. Trudinger, 2009: Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research component: Final report for Phase 3. Centre for Australian Weather and Climate Research CAWCR Tech. Rep. 013, 67 pp., http://www.csiro.au/awap/doc/CTR_013_online_FINAL.pdf.

  • Rayner, N. A., and et al. , 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. Mclntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., and T. Delcroix, 2011: Estimating the effects of ENSO upon the observed freshening trends of the western tropical Pacific Ocean. Geophys. Res. Lett., 38, L21607, https://doi.org/10.1029/2011GL049636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. S. Gupta, H. H. Hendon, C. C. Ummenhofer, and M. H. England, 2011: The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J. Climate, 24, 37343747, https://doi.org/10.1175/2011JCLI3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, P., P. Delecluse, S. Labattu, and L. Terray, 2003: Sea surface temperature associations with the late Indian summer monsoon. Climate Dyn., 21, 593618, https://doi.org/10.1007/s00382-003-0354-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timbal, B., S. Power, R. Colman, J. Viviand, and S. Lirola, 2002: Does soil moisture influence climate variability and predictability over Australia? J. Climate, 15, 12301238, https://doi.org/10.1175/1520-0442(2002)015<1230:DSMICV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, P. C. Mclntosh, G. A. Meyers, M. J. Pook, J. M. Risbey, A. S. Gupta, and A. S. Taschetto, 2009: What causes southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., and et al. , 2011: Indian and Pacific Ocean influences on southeast Australian drought and soil moisture. J. Climate, 24, 13131336, https://doi.org/10.1175/2010JCLI3475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. S. Gupta, M. H. England, A. S. Taschetto, P. R. Briggs, and M. R. Raupach, 2015: How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event? Geophys. Res. Lett., 42, 99429951, https://doi.org/10.1002/2015GL065948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Woesik, R., L. M. De Vantier, and J. S. Glazebrook, 1995: Effects of cyclone “Joy” on nearshore coral communities of the Great Barrier Reef. Mar. Ecol. Prog. Ser., 128, 261270, https://doi.org/10.3354/meps128261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, https://doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, S. A. Josey, T. Lee, A. Kumar, C. Wen, and Y. Xue, 2017: The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J. Climate, 30, 38293852, https://doi.org/10.1175/JCLI-D-16-0479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., and M. Notaro, 2020: Observed land surface feedbacks on the Australian monsoon system. Climate Dyn., 54, 30213040, https://doi.org/10.1007/S00382-020-05154-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., and T. Yamagata, 2015: Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Sci. Rep., 5, 17252, https://doi.org/10.1038/srep17252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., H. Zhang, and I. Dharssi, 2019: On the soil moisture memory and influence on coupled seasonal forecasts over Australia. Climate Dyn., 52, 70857109, https://doi.org/10.1007/S00382-018-4566-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., 2018: Breakdown of the relationship between Australian summer rainfall and ENSO caused by tropical Indian Ocean SST warming. J. Climate, 31, 23212336, https://doi.org/10.1175/JCLI-D-17-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 215 215 45
Full Text Views 60 60 17
PDF Downloads 80 80 25

Improving Australian Rainfall Prediction Using Sea Surface Salinity

View More View Less
  • 1 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
  • | 2 ARC Centre of Excellence for Climate System Science, Hobart, Tasmania, Australia
  • | 3 ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
  • | 4 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
  • | 5 Australian Antarctic Program Partnership, Hobart, Tasmania, Australia
  • | 6 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 7 CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, Crawley, Western Australia, Australia
  • | 8 Centre for Southern Hemisphere Oceans Research, CSIRO, Hobart, Tasmania, Australia
  • | 9 Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, India
© Get Permissions
Restricted access

Abstract

This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer [December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E–165°W and 10°S–10°N) and SSSI (50°–95°E and 10°S–10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saurabh Rathore, saurabh.rathore@utas.edu.au

Abstract

This study uses sea surface salinity (SSS) as an additional precursor for improving the prediction of summer [December–February (DJF)] rainfall over northeastern Australia. From a singular value decomposition between SSS of prior seasons and DJF rainfall, we note that SSS of the Indo-Pacific warm pool region [SSSP (150°E–165°W and 10°S–10°N) and SSSI (50°–95°E and 10°S–10°N)] covaries with Australian rainfall, particularly in the northeast region. Composite analysis that is based on high or low SSS events in the SSSP and SSSI regions is performed to understand the physical links between the SSS and the atmospheric moisture originating from the regions of anomalously high or low, respectively, SSS and precipitation over Australia. The composites show the signature of co-occurring La Niña and negative Indian Ocean dipole with anomalously wet conditions over Australia and conversely show the signature of co-occurring El Niño and positive Indian Ocean dipole with anomalously dry conditions there. During the high SSS events of the SSSP and SSSI regions, the convergence of incoming moisture flux results in anomalously wet conditions over Australia with a positive soil moisture anomaly. Conversely, during the low SSS events of the SSSP and SSSI regions, the divergence of incoming moisture flux results in anomalously dry conditions over Australia with a negative soil moisture anomaly. We show from the random-forest regression analysis that the local soil moisture, El Niño–Southern Oscillation (ENSO), and SSSP are the most important precursors for the northeast Australian rainfall whereas for the Brisbane region ENSO, SSSP, and the Indian Ocean dipole are the most important. The prediction of Australian rainfall using random-forest regression shows an improvement by including SSS from the prior season. This evidence suggests that sustained observations of SSS can improve the monitoring of the Australian regional hydrological cycle.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Saurabh Rathore, saurabh.rathore@utas.edu.au
Save