Explaining the Spatial Pattern of U.S. Extreme Daily Precipitation Change

Martin Hoerling NOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Martin Hoerling in
Current site
Google Scholar
PubMed
Close
,
Lesley Smith NOAA/Physical Sciences Laboratory, Boulder, Colorado
University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Lesley Smith in
Current site
Google Scholar
PubMed
Close
,
Xiao-Wei Quan NOAA/Physical Sciences Laboratory, Boulder, Colorado
University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Xiao-Wei Quan in
Current site
Google Scholar
PubMed
Close
,
Jon Eischeid NOAA/Physical Sciences Laboratory, Boulder, Colorado
University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Jon Eischeid in
Current site
Google Scholar
PubMed
Close
,
Joseph Barsugli NOAA/Physical Sciences Laboratory, Boulder, Colorado
University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Joseph Barsugli in
Current site
Google Scholar
PubMed
Close
, and
Henry F. Diaz University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Henry F. Diaz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observed United States trends in the annual maximum 1-day precipitation (RX1day) over the last century consist of 15%–25% increases over the eastern United States (East) and 10% decreases over the far western United States (West). This heterogeneous trend pattern departs from comparatively uniform observed increases in precipitable water over the contiguous United States. Here we use an event attribution framework involving parallel sets of global atmospheric model experiments with and without climate change drivers to explain this spatially diverse pattern of extreme daily precipitation trends. We find that RX1day events in our model ensembles respond to observed historical climate change forcing differently across the United States with 5%–10% intensity increases over the East but no appreciable change over the West. This spatially diverse forced signal is broadly similar among three models used, and is positively correlated with the observed trend pattern. Our analysis of model and observations indicates the lack of appreciable RX1day signals over the West is likely due to dynamical effects of climate change forcing—via a wintertime atmospheric circulation anomaly that suppresses vertical motion over the West—largely cancelling thermodynamic effects of increased water vapor availability. The large magnitude of eastern U.S. RX1day increases is unlikely a symptom of a regional heightened sensitivity to climate change forcing. Instead, our ensemble simulations reveal considerable variability in RX1day trend magnitudes arising from internal atmospheric processes alone, and we argue that the remarkable observed increases over the East has most likely resulted from a superposition of strong internal variability with a moderate climate change signal. Implications for future changes in U.S. extreme daily precipitation are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0666.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Martin Hoerling, martin.hoerling@noaa.gov

Abstract

Observed United States trends in the annual maximum 1-day precipitation (RX1day) over the last century consist of 15%–25% increases over the eastern United States (East) and 10% decreases over the far western United States (West). This heterogeneous trend pattern departs from comparatively uniform observed increases in precipitable water over the contiguous United States. Here we use an event attribution framework involving parallel sets of global atmospheric model experiments with and without climate change drivers to explain this spatially diverse pattern of extreme daily precipitation trends. We find that RX1day events in our model ensembles respond to observed historical climate change forcing differently across the United States with 5%–10% intensity increases over the East but no appreciable change over the West. This spatially diverse forced signal is broadly similar among three models used, and is positively correlated with the observed trend pattern. Our analysis of model and observations indicates the lack of appreciable RX1day signals over the West is likely due to dynamical effects of climate change forcing—via a wintertime atmospheric circulation anomaly that suppresses vertical motion over the West—largely cancelling thermodynamic effects of increased water vapor availability. The large magnitude of eastern U.S. RX1day increases is unlikely a symptom of a regional heightened sensitivity to climate change forcing. Instead, our ensemble simulations reveal considerable variability in RX1day trend magnitudes arising from internal atmospheric processes alone, and we argue that the remarkable observed increases over the East has most likely resulted from a superposition of strong internal variability with a moderate climate change signal. Implications for future changes in U.S. extreme daily precipitation are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0666.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Martin Hoerling, martin.hoerling@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 923.39 KB)
Save
  • Allan, R., and B. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, https://doi.org/10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M., and W. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Allen, R., and R. Luptowitz, 2017: El Niño–like teleconnection increases California precipitation in response to warming. Nat. Commun., 8, 16055, https://doi.org/10.1038/ncomms16055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, https://doi.org/10.1029/2010GL046258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. Silva, V. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. Hoerling, L. Smith, and J. Eischeid, 2018: Diagnosing human-induced dynamic and thermodynamic drivers of extreme rainfall. J. Climate, 31, 10291051, https://doi.org/10.1175/JCLI-D-16-0919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and Coauthors, 2013: A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J. Climate, 26, 27562783, https://doi.org/10.1175/JCLI-D-12-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., A. Ciavarella, and P. A. Stott, 2018: Different ways of framing event attribution questions: The example of warm and wet winters in the United Kingdom similar to 2015/16. J. Climate, 31, 48274845, https://doi.org/10.1175/JCLI-D-17-0464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciavarella, A., and Coauthors, 2018: Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. Wea. Climate Extremes, 20, 932, https://doi.org/10.1016/j.wace.2018.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, https://doi.org/10.5194/acp-11-11267-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2005: El Niño– or La Niña–like climate change? Climate Dyn., 24, 89104, https://doi.org/10.1007/s00382-004-0478-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, (654), 128, https://doi.org/10.1002/qj.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and E. R. Wahl, 2015: Recent California water year precipitation deficits: A 440-year perspective. J. Climate, 28, 46374652, https://doi.org/10.1175/jcli-d-14-00774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., D. J. Karoly, S. C. Lewis, and L. V. Alexander, 2015: A multiregion assessment of observed changes in the areal extent of temperature and precipitation extremes. J. Climate, 28, 92069220, https://doi.org/10.1175/jcli-d-14-00753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., D. J. Karoly, S. C. Lewis, L. V. Alexander, and M. G. Donat, 2016: A multiregion model evaluation and attribution study of historical changes in the area affected by temperature and precipitation extremes. J. Climate, 29, 82858299, https://doi.org/10.1175/JCLI-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 2017: Precipitation change in the United States. Climate Science Special Report: Fourth National Climate Assessment, D. J. Wuebbles et al., Eds., Vol. I, U.S. Global Change Research Program, 207–230, https://doi.org/10.7930/J0H993CC.

    • Crossref
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547554, https://doi.org/10.1002/2013GL058499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Sedlacek, E. Hawkins, and R. Knutti, 2014: Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett., 41, 85548562, https://doi.org/10.1002/2014GL062018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 21312145, https://doi.org/10.1175/2009JCLI3420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, K. Wolter, and L. Cheng, 2016: Characterizing recent trends in U.S. heavy precipitation. J. Climate, 29, 23132332, https://doi.org/10.1175/JCLI-D-15-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Barsugli, B. Livneh, J. Eischeid, X. Quan, and A. Badger, 2019: Causes for the century-long decline in Colorado River flow. J. Climate, 32, 81818203, https://doi.org/10.1175/JCLI-D-19-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, A., S. Crooks, P. Pall, and D. Stone, 2011: Attribution of autumn/winter 2000 flood risk in England to anthropogenic climate change: A catchment-based study. J. Hydrol., 406, 97112, https://doi.org/10.1016/j.jhydrol.2011.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M., and X. Zhang, 2020: Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA, 117, 13 30813 313, https://doi.org/10.1073/pnas.1921628117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., F. Zeng, and A. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, https://doi.org/10.1175/JCLI-D-12-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment. Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, https://doi.org/10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., Z. Wang, Y. Xu, and Q. Fu, 2016: Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophys. Res. Lett., 43, 98609868, https://doi.org/10.1002/2016GL070869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mascioli, N. R., A. M. Fiore, M. Previdi, and G. Correa, 2016: Temperature and precipitation extremes in the United States: Quantifying the responses to anthropogenic aerosols and greenhouse gases. J. Climate, 29, 26892701, https://doi.org/10.1175/JCLI-D-15-0478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, N., and Coauthors, 2015: Weather@home—Development and validation of a very large ensemble modeling system for probabilistic event attribution. Quart. J. Roy. Meteor. Soc., 141, 15281545, https://doi.org/10.1002/qj.2455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuta, R., and Coauthors, 2017: Over 5000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Amer. Meteor. Soc., 98, 13831398, https://doi.org/10.1175/BAMS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. The National Academies Press, 186 pp., https://doi.org/10.17226/21852.

    • Crossref
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, S., S.-K. Min, X. Zhang, M. Donat, A. King, and Q. Sun, 2020: Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett., 47, e2019GL086875, https://doi.org/10.1029/2019GL086875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, https://doi.org/10.1038/nature09762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2017: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95110, https://doi.org/10.1007/s00382-017-3993-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risser, M. D., and M. F. Wehner, 2017: Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett., 44, 12 45712 464, https://doi.org/10.1002/2017GL075888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

  • Shin, S., and P. D. Sardeshmukh, 2010: Critical influence of the pattern of tropical ocean warming on remote climate trends. Climate Dyn., 36, 15771591, https://doi.org/10.1007/s00382-009-0732-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. Kharin, F. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part II. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific Ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, https://doi.org/10.1038/nclimate1591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and Coauthors, 2013: Attribution of weather and climate-related extreme events. Climate Science for Serving Society: Research, Modelling and Prediction Priorities, Springer, 307–337.

    • Crossref
    • Export Citation
  • Sun, L., D. Allured, M. Hoerling, L. Smith, J. Perlwitz, and D. Murray, 2018: Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to factual and counterfactual forcing. Wea. Climate Extremes, 19, 19, https://doi.org/10.1016/j.wace.2017.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USGCRP, 2018: Impacts, Risks, and Adaptation in the United States. Vol. II, Fourth National Climate Assessment, U.S. Global Change Research Program, 1515 pp., https://doi.org/10.7930/NCA4.2018.

    • Crossref
    • Export Citation
  • van der Wiel, K., and Coauthors, 2016: The resolution dependence of contiguous U.S. precipitation extremes in response to CO2 forcing. J. Climate, 29, 79918012, https://doi.org/10.1175/JCLI-D-16-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G., F. Doblas Reyes, S. Drijfhout, and E. Hawkins, 2013: Reliability of regional climate model trends. Environ. Res. Lett., 8, 014055, https://doi.org/10.1088/1748-9326/8/1/014055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G., and Coauthors, 2017: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., R. Smith, P. Duffy, and G. Bala, 2010: The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Climate Dyn., 32, 241247, https://doi.org/10.1007/s00382-009-0656-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K., A. Simmons, and D. Berry, 2014: Global climate surface humidity [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S19S20, https://journals.ametsoc.org/view/journals/bams/95/7/2014bamsstateoftheclimate.1.xml.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2020: Large contribution from anthropogenic warming to an emerging North America megadrought. Science, 368, 314318, https://doi.org/10.1126/science.aaz9600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, Eds., 2017: Climate Science Special Report. Vol. I, Fourth National Climate Assessment, U.S. Global Change Research Program Rep., 407 pp., https://doi.org/10.7930/J0J964J6.

    • Crossref
    • Export Citation
  • Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., E. J. Fetzer, S. Wong, A. Behrangi, E. T. Olsen, J. Cohen, B. H. Lambrigtsen, and L. Chen, 2014: Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophys. Res. Lett., 41, 29412947, https://doi.org/10.1002/2014GL059830.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1264 0 0
Full Text Views 629 182 21
PDF Downloads 473 116 16