Dynamic Control of the Dominant Modes of Interannual Variability of Snowfall Frequency in China

Bo Sun Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Search for other papers by Bo Sun in
Current site
Google Scholar
PubMed
Close
,
Huijun Wang Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
Nansen Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
,
Biwen Wu Anhui Climate Centre, Hefei, China

Search for other papers by Biwen Wu in
Current site
Google Scholar
PubMed
Close
,
Min Xu Anhui Climate Centre, Hefei, China

Search for other papers by Min Xu in
Current site
Google Scholar
PubMed
Close
,
Botao Zhou Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Botao Zhou in
Current site
Google Scholar
PubMed
Close
,
Huixin Li Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Huixin Li in
Current site
Google Scholar
PubMed
Close
, and
Teng Wang Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Teng Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the first two leading modes of the interannual variability of frequency of snowfall events (FSE) over China in the winter during 1986–2018. The positive phase of the first leading mode (EOF1) is mainly characterized by positive FSE anomalies in northeastern–northwestern China and negative FSE anomalies in the three-river-source region. In contrast, the positive phase of the second leading mode (EOF2) is mainly characterized by positive FSE anomalies in central-eastern China (CEC). EOF1 is affected by the synoptic-scale wave activity over the midlatitudes of the East Asian continent, where active synoptic-scale wave activity over the midlatitudes may cause increased FSE over northeastern–northwestern China, and vice versa. In a winter of a negative phase of the North Atlantic Oscillation, an anomalous deep cold low may occur over Siberia, which may induce increased meridional air temperature gradient, increased atmospheric baroclinicity, and hence increased FSE over the midlatitudes of the East Asian continent. The EOF2 is affected by the interaction between anomalous northerly cold advection and anomalous southerly water vapor transport over CEC. The positive phase of EOF2 is associated with negative sea ice anomalies in the Barents Sea–Kara Sea region and negative sea surface temperature anomalies in the central-eastern tropical Pacific. Reduced sea ice in the Barents Sea–Kara Sea during January–February may cause increased northerly cold advection over CEC, while a La Niña–like condition during January may induce southerly water vapor transport anomalies over CEC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn

Abstract

This study investigates the first two leading modes of the interannual variability of frequency of snowfall events (FSE) over China in the winter during 1986–2018. The positive phase of the first leading mode (EOF1) is mainly characterized by positive FSE anomalies in northeastern–northwestern China and negative FSE anomalies in the three-river-source region. In contrast, the positive phase of the second leading mode (EOF2) is mainly characterized by positive FSE anomalies in central-eastern China (CEC). EOF1 is affected by the synoptic-scale wave activity over the midlatitudes of the East Asian continent, where active synoptic-scale wave activity over the midlatitudes may cause increased FSE over northeastern–northwestern China, and vice versa. In a winter of a negative phase of the North Atlantic Oscillation, an anomalous deep cold low may occur over Siberia, which may induce increased meridional air temperature gradient, increased atmospheric baroclinicity, and hence increased FSE over the midlatitudes of the East Asian continent. The EOF2 is affected by the interaction between anomalous northerly cold advection and anomalous southerly water vapor transport over CEC. The positive phase of EOF2 is associated with negative sea ice anomalies in the Barents Sea–Kara Sea region and negative sea surface temperature anomalies in the central-eastern tropical Pacific. Reduced sea ice in the Barents Sea–Kara Sea during January–February may cause increased northerly cold advection over CEC, while a La Niña–like condition during January may induce southerly water vapor transport anomalies over CEC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn
Save
  • Alexander, M. A., I. Blade, M. Newman, J. R. Lanzate, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, J., and J. Sun, 2016: Connection between November snow cover over eastern Europe and winter precipitation over East Asia. Int. J. Climatol., 36, 23962404, https://doi.org/10.1002/joc.4484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., J. Sun, and Y. Gao, 2019: Effects of AO on the interdecadal oscillating relationship between the ENSO and East Asian winter monsoon. Int. J. Climatol., 40, 43744383, https://doi.org/10.1002/JOC.6459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Xu, X. Zhou, J. Tang, Y. Kuzyakov, H. Yu, J. Fan, and W. Ding, 2017: Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: A 3-year field experiment. Global Change Biol., 23, 34033417, https://doi.org/10.1111/gcb.13620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, Y. Song, and J. Zhang, 2008: The unprecedented freezing disaster in January 2008 in Southern China and its possible association with the global warming. Acta Meteor. Sin., 22, 538558.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Sun, Z. Wang, Y. Zhu, and Y. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes. Int. J. Climatol., 29, 19261944, https://doi.org/10.1002/joc.1759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.

  • Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. J. Gao, 2018: Regional Earth system modeling: Review and future directions. Atmos. Oceanic Sci. Lett., 11, 189197, https://doi.org/10.1080/16742834.2018.1452520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809, https://doi.org/10.1007/s003820000145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., S. He, X. Hao, and H. Wang, 2017: Recent interdecadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian Oceans. Climate Dyn., 50, 14131424, https://doi.org/10.1007/S00382-017-3694-X.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. J. Dunstone, A. A. Scaife, D. M. Smith, S. Ineson, J. Lim, and D. Fereday, 2019: The impact of strong El Niño and La Niña events on the North Atlantic. Geophys. Res. Lett., 46, 28742883, https://doi.org/10.1029/2018GL081776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S. P., and H. J. Wang, 2012: An integrated East Asian winter monsoon index and its interannual variability (in Chinese with English abstract). Chin. J. Atmos. Sci., 36, 523538.

    • Search Google Scholar
    • Export Citation
  • He, S. P., and H. J. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092, https://doi.org/10.1126/science.1058582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ke, C. Q., T. Yu, K. Yu, G. D. Tang, and L. King, 2009: Snowfall trends and variability in Qinghai, China. Theor. Appl. Climatol., 98, 251258, https://doi.org/10.1007/s00704-009-0105-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, I. W., A. Prabhu, J. Oh, and R. H. Kripalani, 2019: Combined impact of Greenland Sea ice, Eurasian snow, and El Niño–Southern Oscillation on Indian and Korean summer monsoons. Int. J. Climatol., 40, 13751395, https://doi.org/10.1002/joc.6275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., and H. Wang, 2014: Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon. Int. J. Climatol., 34, 36163625, https://doi.org/10.1002/joc.3936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H. X., H. P. Chen, H. J. Wang, J. Q. Sun, and J. H. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over Northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., R. Wu, S. Yang, and Z. Wang, 2020a: Relationship between Eurasian cold-season snows and Asian summer monsoons: Regional characteristics and seasonality (in Chinese with English abstract). Daqi Kexue Xuebao, 43, 93103.

    • Search Google Scholar
    • Export Citation
  • Lu, M., Z. Kuang, S. Yang, Z. Li, and H. Fan, 2020b: A bridging role of winter snow over northern China and southern Mongolia in linking the East Asian winter and summer monsoons. J. Climate, 33, 98499862, https://doi.org/10.1175/JCLI-D-20-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, J. P., T. Wang, H. J. Wang, Y. L. Zhu, and J. Q. Sun, 2018: Interdecadal weakening of the East Asian winter monsoon in the mid-1980s: The roles of external forcings. J. Climate, 31, 89859000, https://doi.org/10.1175/JCLI-D-17-0868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, https://doi.org/10.1002/2016GL068330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2015: Arctic summer storm track in CMIP3/5 climate models. Climate Dyn., 44, 13111327, https://doi.org/10.1007/s00382-014-2229-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic Sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, F. Vitart, G. Balsamo, A. Weisheimer, and F. J. Doblas-Reyes, 2016: Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Climate Dyn., 47, 13251334, https://doi.org/10.1007/s00382-015-2903-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., 2019: Ural blocking as a driver of early-winter stratospheric warmings. Geophys. Res. Lett., 46, 54605468, https://doi.org/10.1029/2019GL082097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2018: Climate impacts and Arctic precursors of changing storm track activity in the Atlantic-Eurasian region. Sci. Rep., 8, 17786, https://doi.org/10.1038/s41598-018-35900-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., 2017: Seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring and the associated surface heat budget. Atmos. Oceanic Sci. Lett., 10, 191197, https://doi.org/10.1080/16742834.2017.1286226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., 2018: Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects. Adv. Atmos. Sci., 35, 317333, https://doi.org/10.1007/s00376-017-7089-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2013: Water vapor transport paths and accumulation during widespread events in Northeastern China. J. Climate, 26, 45504566, https://doi.org/10.1175/JCLI-D-12-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. J. Wang, 2017: A trend towards a stable warm and windless state of the surface weather conditions in northern and northeastern China during 1961–2014. Adv. Atmos. Sci., 34, 713726, https://doi.org/10.1007/s00376-017-6252-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., Y. L. Zhu, and H. J. Wang, 2011: The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci., 28, 10391048, https://doi.org/10.1007/s00376-010-0093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., H. J. Wang, and B. T. Zhou, 2019a: Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability. J. Geophys. Res. Atmos., 124, 926941, https://doi.org/10.1029/2018JD029921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., H. J. Wang, and B. T. Zhou, 2019b: Interdecadal variation of the relationship between East Asian water vapor transport and tropical Pacific sea surface temperatures during January and associated mechanisms. J. Climate, 32, 75757594, https://doi.org/10.1175/JCLI-D-19-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., S. Yang, W. Li, R. Zhang, and R. Wu, 2016: Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice. Climate Dyn., 47, 481496, https://doi.org/10.1007/s00382-015-2851-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, W. Yuan, and H. Chen, 2010: Spatial-temporal features of intense snowfall events in China and their possible change. J. Geophys. Res. Atmos., 115, D16110, https://doi.org/10.1029/2009JD013541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704, https://doi.org/10.1029/2006GL027881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., K. Yang, Y. Li, D. Wu, and Y. Bo, 2017: Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China. J. Climate, 30, 885903, https://doi.org/10.1175/JCLI-D-16-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin. Sci. Bull., 57, 35353540, https://doi.org/10.1007/s11434-012-5285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2012: Extreme climate in China: Facts, simulation and projection. Meteor. Z., 21, 279304, https://doi.org/10.1127/0941-2948/2012/0330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., P. Zhai, and C. Wang, 2009: Variations in extratropical cyclone activity in northern East Asia. Adv. Atmos. Sci., 26, 471479, https://doi.org/10.1007/s00376-009-0471-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. L., J. A. Screen, and A. A. Scaife, 2020: Links between Barents-Kara Sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophys. Res. Lett., 47, e2019GL085679, https://doi.org/10.1029/2019GL085679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat. Geosci., 5, 313317, https://doi.org/10.1038/ngeo1438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Su, and R. D’Arrigo, 2015: Patterns of Asian winter climate variability and links to Arctic sea ice. J. Climate, 28, 68416858, https://doi.org/10.1175/JCLI-D-14-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese with English abstract). Chin. J. Geophys., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., and B. Sun, 2019: Different roles of water vapor transport and cold advection in the intensive snowfall events over North China and the Yangtze River Valley. Atmosphere, 10, 368, https://doi.org/10.3390/atmos10070368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, T., Q. Li, W. Liu, X. Liu, L. Li, and P. D. Maeyer, 2020: Spatiotemporal variability of snowfall and its concentration in Northern Xinjiang, Northwest China. Theor. Appl. Climatol., 139, 12471259, https://doi.org/10.1007/s00704-019-02994-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. T. Kim, 2011: Relationship between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Z. Wang, Y. Shi, Y. Xu, and Z. Han, 2018: Historical and future changes of snowfall events in China under a warming background. J. Climate, 31, 58735889, https://doi.org/10.1175/JCLI-D-17-0428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L. T., and R. Wu, 2014: Interdecadal variability of winter precipitation in Northwest China and its association with the North Atlantic SST change. Int. J. Climatol., 35, 11721179, https://doi.org/10.1002/joc.4047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., X. Wang, T. J. Zhou, C. Li, and J. C. L. Chan, 2007: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283293, https://doi.org/10.1007/s00703-007-0263-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 39783991, https://doi.org/10.1175/2009MWR2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., and H. S. Chen, 2019: Possible connection between anomalous activity of Scandinavian atmospheric teleconnection pattern and winter snowfall in the Yangtze-Huaihe River Basin of China. Atmos. Oceanic Sci. Lett., 12, 218225, https://doi.org/10.1080/16742834.2019.1593041.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 357 0 0
Full Text Views 2267 1319 79
PDF Downloads 721 169 17