• Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., C. Jakob, and M. Reeder, 2011a: Recent global trends in atmospheric fronts. Geophys. Res. Lett., 38, L21812, https://doi.org/10.1029/2011GL049481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., M. J. Reeder, and C. Jakob, 2011b: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, https://doi.org/10.1029/2010GL046451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. Solberg, 1922: Life cycles of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, 118.

    • Search Google Scholar
    • Export Citation
  • Blázquez, J., and S. A. Solman, 2018: Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Climate Dyn., 50, 27052717, https://doi.org/10.1007/s00382-017-3765-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L. and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 79110 801, https://doi.org/10.1002/jgrd.50852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, https://doi.org/10.1029/2012GL051736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., N. Nicholls, C. Jakob, and K. L. Shelton, 2014: Atmospheric fronts in current and future climates. Geophys. Res. Lett., 41, 76427650, https://doi.org/10.1002/2014GL061943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, and N. Nicholls, 2015: Can the CMIP5 models represent winter frontal precipitation? Geophys. Res. Lett., 42, 85968604, https://doi.org/10.1002/2015GL066015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and G. Li, 2004: The East Asia winter monsoon. East Asian Monsoon, C.-P. Chang, Eds., World Scientific, 54–106.

    • Crossref
    • Export Citation
  • Chang, E. K. M., Y. J. Gua, X. M. Xia, and M. H. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246260, https://doi.org/10.1175/JCLI-D-11-00707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 13231341, https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. T. J., Z. H. Jiang, and M. C. Wu, 2003: Spring heavy rain events in Taiwan during warm episodes and the associated large-scale conditions. Mon. Wea. Rev., 131, 11731188, https://doi.org/10.1175/1520-0493(2003)131<1173:SHREIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-T., C.-C. Kuo, and P.-S. Yu, 2009: Historical trends and variability of meteorological droughts in Taiwan. Hydrol. Sci. J., 54, 430441, https://doi.org/10.1623/hysj.54.3.430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., M.-C. Yen, W.-R. Huang, and W. A. Gallus Jr., 2002: An East Asian cold surge: Case study. Mon. Wea. Rev., 130, 22712290, https://doi.org/10.1175/1520-0493(2002)130<2271:AEACSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., L.-F. Huang, L. Tseng, J.-Y. Tu, and P.-H. Tan, 2009: Annual cycle of rainfall in the western North Pacific and East Asian sector. J. Climate, 22, 20732094, https://doi.org/10.1175/2008JCLI2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Grieger, J., G. C. Leckebusch, M. G. Donat, M. Schuster, and U. Ulbrich, 2014: Southern Hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int. J. Climatol., 34, 34003416, https://doi.org/10.1002/joc.3917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765, https://doi.org/10.1017/S1350482798000553.

  • Hsu, H.-H., and C.-T. Chen, 2002: Observed and projected climate change in Taiwan. Meteor. Atmos. Phys., 79, 87104, https://doi.org/10.1007/s703-002-8230-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-W., H.-H. Hsu, and M.-M. Lu, 2004: Decadal oscillation of spring rain in northern Taiwan. Geophys. Res. Lett., 31, L22206, https://doi.org/10.1029/2004GL021344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-W., H.-J. Lin, and H.-H. Hsu, 2014: Madden–Julian oscillation and the winter rainfall in Taiwan. J. Climate, 27, 45214530, https://doi.org/10.1175/JCLI-D-13-00435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., G.-J. Chen, and M.-C. Wu, 2003: Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and non-ENSO years. Mon. Wea. Rev., 131, 17691782, https://doi.org/10.1175//2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-M., and R.-J. May, 2003: A study on the long-term variations of Taiwan and global precipitation (in Chinese with English abstract). Atmos. Sci., 31, 199220.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., and A. Hense, 2006: A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophys. Res. Lett., 33, L08708, https://doi.org/10.1029/2006GL025779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, https://doi.org/10.1038/nature02771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos., 120, 11 17311 190, https://doi.org/10.1002/2015JD023586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303312, https://doi.org/10.1175/BAMS-89-3-303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, R. J., and L. C. Clarke, 1965: Experiments in numerical objective frontal analysis. Mon. Wea. Rev., 93, 547556, https://doi.org/10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. Hsu, D. Braithwaite, and H. Ashouri, and NOAA CDR Program, 2014: NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), version 1 revision 1. NOAA National Centers for Environmental Information, accessed 5 November 2018, https://doi.org/10.7289/V51V5BWQ.

    • Crossref
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Utsumi, N., H. Kim, S. Seto, S. Kanae, and T. Oki, 2014: Climatological characteristics of fronts in the western North Pacific based on surface weather charts. J. Geophys. Res. Atmos., 119, 94009418, https://doi.org/10.1002/2014JD021734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yen, M. C., and T. C. Chen, 2000: Seasonal variation of the rainfall over Taiwan. Int. J. Climatol., 20, 803809, https://doi.org/10.1002/1097-0088(20000615)20:7<803::AID-JOC525>3.0.CO;2-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 292 89 0
Full Text Views 161 84 8
PDF Downloads 153 83 5

Observed and Projected Frontal Activities in East Asia

View More View Less
  • 1 Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
  • | 2 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Restricted access

Abstract

An objective front detection method is applied to ERA5, CMIP5 historical, and RCP8.5 simulations to evaluate climate model performance in simulating front frequency and to understand future projections of seasonal front activities. The study area is East Asia for two natural seasons, defined as winter (2 December–14 February) and spring (15 February–15 May), in accordance with regional circulation and precipitation patterns. Seasonal means of atmospheric circulation and thermal structures are analyzed to understand possible factors responsible for future front changes. The front location and frequency in CMIP5 historical simulations are captured reasonably. Frontal precipitation accounts for more than 30% of total precipitation over subtropical regions. Projections suggest that winter fronts will decrease over East Asia, especially over southern China. Frontal precipitation is projected to decrease for 10%–30%. Front frequency increases in the South China Sea and tropical western Pacific because of more tropical moisture supply, which enhances local moisture contrasts. During spring, southern China and Taiwan will experience fewer fronts and less frontal precipitation while central China, the Korean Peninsula, and Japan may experience more fronts and more frontal precipitation due to moisture flux from the south that enhances wet-bulb potential temperature θw gradients. Consensus among CMIP5 models in front frequency tendency is evaluated. The models exhibit relatively high consensus in the decreasing trend over polar and subtropical frontal zone in winter and over southern China and Taiwan in spring that may prolong the dry season. Spring front activities are crucial for water resource and risk management in the southern China and Taiwan.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chia-Chi Wang, wjq4@g.pccu.edu.tw

Abstract

An objective front detection method is applied to ERA5, CMIP5 historical, and RCP8.5 simulations to evaluate climate model performance in simulating front frequency and to understand future projections of seasonal front activities. The study area is East Asia for two natural seasons, defined as winter (2 December–14 February) and spring (15 February–15 May), in accordance with regional circulation and precipitation patterns. Seasonal means of atmospheric circulation and thermal structures are analyzed to understand possible factors responsible for future front changes. The front location and frequency in CMIP5 historical simulations are captured reasonably. Frontal precipitation accounts for more than 30% of total precipitation over subtropical regions. Projections suggest that winter fronts will decrease over East Asia, especially over southern China. Frontal precipitation is projected to decrease for 10%–30%. Front frequency increases in the South China Sea and tropical western Pacific because of more tropical moisture supply, which enhances local moisture contrasts. During spring, southern China and Taiwan will experience fewer fronts and less frontal precipitation while central China, the Korean Peninsula, and Japan may experience more fronts and more frontal precipitation due to moisture flux from the south that enhances wet-bulb potential temperature θw gradients. Consensus among CMIP5 models in front frequency tendency is evaluated. The models exhibit relatively high consensus in the decreasing trend over polar and subtropical frontal zone in winter and over southern China and Taiwan in spring that may prolong the dry season. Spring front activities are crucial for water resource and risk management in the southern China and Taiwan.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chia-Chi Wang, wjq4@g.pccu.edu.tw
Save