• Abernathey, R., and C. Wortham, 2015: Phase speed cross spectra of eddy heat fluxes in the eastern Pacific. J. Phys. Oceanogr., 45, 12851301, https://doi.org/10.1175/JPO-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, https://doi.org/10.1016/j.ocemod.2003.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137, https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardyna, M., H. Claustre, J.-B. Sallée, F. D’Ovidio, B. Gentili, G. van Dijken, F. D’Ortenzio, and K. R. Arrigo, 2017: Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophys. Res. Lett., 44, 50165024, https://doi.org/10.1002/2016GL072428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, and R. Schnur, 2001: Detection of anthropogenic climate change in the world’s oceans. Science, 292, 270274, https://doi.org/10.1126/science.1058304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington, 2005: Penetration of human-induced warming into the world’s oceans. Science, 309, 284287, https://doi.org/10.1126/science.1112418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, G. R., T. D. Jickells, P. S. Liss, and T. J. Osborn, 2003: The role of the oceans in climate. Int. J. Climatol., 23, 11271159, https://doi.org/10.1002/joc.926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2014: Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Climate, 27, 49965018, https://doi.org/10.1175/JCLI-D-13-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2015: Determining the origins of advective heat transport convergence variability in the North Atlantic. J. Climate, 28, 39433956, https://doi.org/10.1175/JCLI-D-14-00579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of properties in a free-surface model. Ocean Modell., 6, 221244, https://doi.org/10.1016/S1463-5003(03)00009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. Zanna, and L. M. Polvani, 2020: Identifying a human signal in the North Atlantic warming hole. Nat. Commun., 11, 1540, https://doi.org/10.1038/s41467-020-15285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., and et al. , 2020: Importance of boundary processes for heat uptake in the subpolar North Atlantic. J. Geophys. Res. Oceans, 125, e2020JC016366, https://doi.org/10.1029/2020JC016366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devred, E., S. Sathyendranath, and T. Platt, 2007: Delineation of ecological provinces using ocean colour radiometry. Mar. Ecol. Prog. Ser., 346, 113, https://doi.org/10.3354/meps07149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. McWilliams, 2007: Mechanisms governing interannual variability of upper-ocean temperature in a global ocean hindcast simulation. J. Phys. Oceanogr., 37, 19181938, https://doi.org/10.1175/JPO3089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, X., and M. B. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, https://doi.org/10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and et al. , 2010: The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn., 60, 771790, https://doi.org/10.1007/s10236-010-0292-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartigan, J. A., and M. Wong, 1979: Algorithm AS 136: A k-means clustering algorithm. J. Roy. Stat. Soc., 28C, 100108, https://doi.org/10.2307/2346830.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models, Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Hill, C., D. Ferreira, J.-M. Campin, J. Marshall, R. Abernathey, and N. Barrier, 2012: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models—Insights from virtual deliberate tracer release experiments. Ocean Modell., 45, 1426, https://doi.org/10.1016/j.ocemod.2011.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105, 16 78316 801, https://doi.org/10.1029/2000JC900071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, https://doi.org/10.1038/nature06921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, https://doi.org/10.1007/s00382-012-1500-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, E. van Sebille, M. O. Baringer, C. Wang, D. B. Enfield, S. G. Yeager, and B. P. Kirtman, 2011: What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophys. Res. Lett., 38, L17607, https://doi.org/10.1029/2011GL048856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., C. Wunsch, P. Heimbach, and G. Forget, 2015: Vertical redistribution of oceanic heat content. J. Climate, 28, 38213833, https://doi.org/10.1175/JCLI-D-14-00550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and S.-P. Xie, 2018: An ocean view of the global surface warming hiatus. Oceanography, 31, 7279, https://doi.org/10.5670/oceanog.2018.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, R., and B. Li, 2009: Revisiting climate region definitions via clustering. J. Climate, 22, 17871800, https://doi.org/10.1175/2008JCLI2455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Megann, A., 2018: Estimating the numerical diapycnal mixing in an eddy-permitting ocean model. Ocean Modell., 121, 1933, https://doi.org/10.1016/j.ocemod.2017.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., and R. M. Ponte, 2012: Importance of circulation changes to Atlantic heat storage rates on seasonal and interannual time scales. J. Climate, 25, 350362, https://doi.org/10.1175/JCLI-D-11-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., R. M. Ponte, C. M. Little, M. W. Buckley, and I. Fukumori, 2017: Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content. J. Geophys. Res. Oceans, 122, 71817197, https://doi.org/10.1002/2017JC012845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., P. J. Gleckler, T. P. Barnett, B. D. Santer, and P. J. Durack, 2012: The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett., 39, L21704, https://doi.org/10.1029/2012GL053389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., D. Calvert, N. Dunstone, L. Hermanson, M. D. Palmer, and D. Smith, 2016: On the drivers and predictability of seasonal-to-interannual variations in regional sea level. J. Climate, 29, 75657585, https://doi.org/10.1175/JCLI-D-15-0886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., M. D. Palmer, R. P. Allan, D. G. Desbruyeres, P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans, 122, 726744, https://doi.org/10.1002/2016JC012278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J. I., R. T. Sutton, and D. M. Smith, 2012: Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett., 39, L19713, https://doi.org/10.1029/2012GL053370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, F. O. Bryan, and S. P. Bishop, 2019: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? J. Climate, 32, 23972421, https://doi.org/10.1175/JCLI-D-18-0576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, S. Larson, and R. A. Tomas, 2020: What drives upper ocean temperature variability in coupled climate models and observations? J. Climate, 33, 577596, https://doi.org/10.1175/JCLI-D-19-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonnewald, M., C. Wunsch, and P. Heimbach, 2019: Unsupervised learning reveals geography of global ocean dynamical regions. Earth Space Sci., 6, 784794, https://doi.org/10.1029/2018EA000519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonnewald, M., S. Dutkiewicz, C. Hill, and G. Forget, 2020: Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces. Sci. Adv., 6, eaay4740, https://doi.org/10.1126/sciadv.aay4740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., C. G. Piecuch, M. A. Merrifield, J. P. McCreary, and E. Firing, 2016: Forcing of recent decadal variability in the equatorial and North Indian Ocean. J. Geophys. Res. Oceans, 121, 67626778, https://doi.org/10.1002/2016JC012132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and et al. , 2016: An imperative to monitor Earth’s energy imbalance. Nat. Climate Change, 6, 138144, https://doi.org/10.1038/nclimate2876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., 2000: Signatures of air–sea interactions in a coupled atmosphere-ocean GCM. J. Climate, 13, 33613379, https://doi.org/10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1999: Approximating the energy transport across oceanic sections. J. Geophys. Res., 104, 79157919, https://doi.org/10.1029/1998JC900089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, https://doi.org/10.1175/JCLI3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X.-H., T. Boyer, K. Trenberth, T. R. Karl, S.-P. Xie, V. Nieves, K.-K. Tung, and D. Roemmich, 2016: The global warming hiatus: Slowdown or redistribution? Earth’s Future, 4, 472482, https://doi.org/10.1002/2016EF000417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, https://doi.org/10.1175/JCLI-D-11-00595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., S. Khatiwala, J. M. Gregory, J. Ison, and P. Heimbach, 2019: Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. USA, 116, 11261131, https://doi.org/10.1073/pnas.1808838115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2017: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability. Geophys. Res. Lett., 44, 78657875, https://doi.org/10.1002/2017GL074342.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 266 266 43
Full Text Views 62 62 13
PDF Downloads 78 78 16

Drivers of Local Ocean Heat Content Variability in ECCOv4

View More View Less
  • 1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

Variation in upper-ocean heat content is a critical factor in understanding global climate variability. Using temperature anomaly budgets in a two-decade-long physically consistent ocean state estimate (ECCOv4r3; 1992–2015), we describe the balance between atmospheric forcing and ocean transport mechanisms for different depth horizons and at varying temporal and spatial resolutions. Advection dominates in the tropics, while forcing is most relevant at higher latitudes and in parts of the subtropics, but the balance of dominant processes changes when integrating over greater depths and considering longer time scales. While forcing is shown to increase with coarser resolution, overall the heat budget balance between it and advection is remarkably insensitive to spatial scale. A novel perspective on global ocean heat content variability was made possible by combining unsupervised classification with a measure of temporal variability in heat budget terms to identify coherent dynamical regimes with similar underlying mechanisms, which are consistent with prior research. The vast majority of the ocean includes significant contributions by both forcing and advection. However advection-driven regions were identified that coincide with strong currents, such as western boundary currents, the Antarctic Circumpolar Current, and the tropics, while forcing-driven regions were defined by shallower wintertime mixed layers and weak velocity fields. This identification of comprehensive dynamical regimes and the sensitivity of the ocean heat budget analysis to exact resolution (for different depth horizons and at varying temporal and spatial resolutions) should provide a useful orientation for future studies of ocean heat content variability in specific ocean regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0058.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jan-Erik Tesdal, tesdal@ldeo.columbia.edu

Abstract

Variation in upper-ocean heat content is a critical factor in understanding global climate variability. Using temperature anomaly budgets in a two-decade-long physically consistent ocean state estimate (ECCOv4r3; 1992–2015), we describe the balance between atmospheric forcing and ocean transport mechanisms for different depth horizons and at varying temporal and spatial resolutions. Advection dominates in the tropics, while forcing is most relevant at higher latitudes and in parts of the subtropics, but the balance of dominant processes changes when integrating over greater depths and considering longer time scales. While forcing is shown to increase with coarser resolution, overall the heat budget balance between it and advection is remarkably insensitive to spatial scale. A novel perspective on global ocean heat content variability was made possible by combining unsupervised classification with a measure of temporal variability in heat budget terms to identify coherent dynamical regimes with similar underlying mechanisms, which are consistent with prior research. The vast majority of the ocean includes significant contributions by both forcing and advection. However advection-driven regions were identified that coincide with strong currents, such as western boundary currents, the Antarctic Circumpolar Current, and the tropics, while forcing-driven regions were defined by shallower wintertime mixed layers and weak velocity fields. This identification of comprehensive dynamical regimes and the sensitivity of the ocean heat budget analysis to exact resolution (for different depth horizons and at varying temporal and spatial resolutions) should provide a useful orientation for future studies of ocean heat content variability in specific ocean regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0058.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jan-Erik Tesdal, tesdal@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.91 MB)
Save