• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, and N.-C. Lau, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific Meridional Mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., X. Cao, B. S. Giese, and A. M. Da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr., 26, 11651175, https://doi.org/10.1175/1520-0485(1996)026<1165:DAISVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396, https://doi.org/10.2151/jmsj1965.70.1B_373.

  • Ding, Y., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, https://doi.org/10.2151/jmsj.85B.21.

  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res., 116, 116, D13102, https://doi.org/10.1029/2010JD015160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., K.-Y. Heo, S.-S. Lee, K.-S. Yun, and J.-G. Jhun, 2012: Variability in the East Asian monsoon: A review. Meteor. Appl., 19, 200215, https://doi.org/10.1002/met.1320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and et al. , 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and B. Liu, 2016: The East Asian subtropical summer monsoon: Recent progress. J. Meteor. Res., 30, 135155, https://doi.org/10.1007/s13351-016-5222-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, and G. Huang, 2007: Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv. Atmos. Sci., 24, 9931023, https://doi.org/10.1007/s00376-007-0993-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 54355453, https://doi.org/10.1175/2011JCLI4099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., H.-C. Ren, J. Zuo, and H.-L. Ren, 2017: Early summer southern China rainfall variability and its oceanic drivers. Climate Dyn., 50, 46914705, https://doi.org/10.1007/s00382-017-3898-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, Y., B. Shen, S. Li, G. Liu, and X. Yang, 2016: Mechanisms for the formation of Northeast China cold vortex and its activities and impacts: An overview. J. Meteor. Res., 30, 881896, https://doi.org/10.1007/s13351-016-6003-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., Y. Ouyang, B. Wang, J. Yang, J. Ling, and P.-C. Hsu, 2020: Seasonal evolution of the intraseasonal variability of China summer precipitation. Climate Dyn., 54, 46414655, https://doi.org/10.1007/s00382-020-05251-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2005: Interannual variation of North China rainfall in rainy season and SSTs in the equatorial eastern Pacific. Chin. Sci. Bull., 50, 20692073, https://doi.org/10.1360/04wd0271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., J. C. L. Chan, and G. Wu, 2011: Interannual variations of early summer monsoon rainfall over South China under different PDO backgrounds. Int. J. Climatol., 31, 847862, https://doi.org/10.1002/joc.2129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, R., M. Wen, R. Zhang, and L. Li, 2019: The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Climate Dyn., 53, 29492968, https://doi.org/10.1007/s00382-019-04670-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., and D.-K. Lee, 2000: Seasonal march of Asian summer monsoon. Int. J. Climatol., 20, 13711386, https://doi.org/10.1002/1097-0088(200009)20:11<1371::AID-JOC538>3.0.CO;2-V.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1, 89100, https://doi.org/10.1006/asle.2000.0018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research of the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, J. Yang, T. Zhou, and Z. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 38643875, https://doi.org/10.1175/2009JCLI2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and J. Li, 2008: Prediction of the Asian-Australian monsoon interannual variations with the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 25, 387394, https://doi.org/10.1007/s00376-008-0387-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and J. Li, 2009: Seasonal prediction of the global precipitation annual modes with the grid-point atmospheric model of IAP LASG. Acta Meteor. Sin., 23, 428437.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and L. Yu, 2016: Seasonal prediction of the East Asian summer monsoon with a partial-least square model. Climate Dyn., 46, 30673078, https://doi.org/10.1007/s00382-015-2753-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, J. He, and X. Zhu, 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int. J. Climatol., 32, 794800, https://doi.org/10.1002/joc.2309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., and A. Duan, 2016: Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon. J. Climate, 29, 84958514, https://doi.org/10.1175/JCLI-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Y. Tanimoto, 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett., 25, 21852188, https://doi.org/10.1029/98GL01525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, W., B. Wang, and S.-Y. Yim, 2016: Long-lead seasonal prediction of China summer rainfall using an EOF–PLS regression-based methodology. J. Climate, 29, 17831796, https://doi.org/10.1175/JCLI-D-15-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, W., B. Wang, S.-Y. Yim, and K.-J. Ha, 2017: Predictable patterns of the May–June rainfall anomaly over East Asia. J. Geophys. Res. Atmos., 122, 22032217, https://doi.org/10.1002/2016JD025856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., and K.-M. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol., 24, 16251644, https://doi.org/10.1002/joc.1094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., J.-G. Jhun, R. Lu, and B. Wang, 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. J. Geophys. Res., 115, D22113 , https://doi.org/10.1029/2010JD013996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., B. Wang, and W. Xing, 2016: Peak-summer East Asian rainfall predictability and prediction. Part II: Extratropical East Asia. Climate Dyn., 47, 1530, https://doi.org/10.1007/s00382-015-2849-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 33093322, https://doi.org/10.1175/2011JCLI4084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., H. Li, M. F. Stuecker, F.-F. Jin, and A. G. Turner, 2015: A new understanding of El Niño’s impact over East Asia: Dominance of the ENSO combination mode. J. Climate, 29, 43474359, https://doi.org/10.1175/JCLI-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 207 207 46
Full Text Views 36 36 11
PDF Downloads 57 57 19

Seasonal Evolution of Anomalous Rainband over East China Regulated by Sea Surface Temperature Anomalies in the Northern Hemisphere

View More View Less
  • 1 State Key Laboratory of Severe Weather (LASW) and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

A seasonal evolution of rainbands over East China is evident and shows remarkable year-to-year variations. The present study identifies two dominant interannual modes of the seasonal evolution of rainbands over East China from 1981 to 2018: 1) the sudden change pattern, in which the anomalous rainfall changes abruptly from boreal spring to summer, especially over South China; and 2) the northward migration pattern, which shows a gradual poleward migration of the anomalous rainband over East China with the East Asian summer monsoon (EASM). Both of them are regulated by the sea surface temperature anomalies (SSTAs) in the Northern Hemisphere from spring to summer. In the sudden change pattern, the SSTAs in the Pacific modulate spring rainfall over South China via the ENSO–EASM teleconnection. By contrast, the North Atlantic SSTAs change the midlatitude wave train and modify summer rainfall over South and North China, in conjunction with the anomalous tropical circulation due to the Indian Ocean SSTAs. In the northward migration pattern, the North Pacific SSTAs alter spring rainfall over South China by varying the low-level western North Pacific subtropical high and the zonal land–sea thermal contrast over East Asia. Afterward, the ENSO-like SSTAs induce a Pacific–Japan teleconnection and shift the anomalous rainband northward to the Yangtze–Huai River and North China in summer. The seasonal switch of the SSTAs regulating these two modes is physically linked from boreal spring to summer. This mechanism provides potential seasonal predictability of the seasonal evolution of the anomalous rainband over East China.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boqi Liu, liubq@cma.gov.cn

Abstract

A seasonal evolution of rainbands over East China is evident and shows remarkable year-to-year variations. The present study identifies two dominant interannual modes of the seasonal evolution of rainbands over East China from 1981 to 2018: 1) the sudden change pattern, in which the anomalous rainfall changes abruptly from boreal spring to summer, especially over South China; and 2) the northward migration pattern, which shows a gradual poleward migration of the anomalous rainband over East China with the East Asian summer monsoon (EASM). Both of them are regulated by the sea surface temperature anomalies (SSTAs) in the Northern Hemisphere from spring to summer. In the sudden change pattern, the SSTAs in the Pacific modulate spring rainfall over South China via the ENSO–EASM teleconnection. By contrast, the North Atlantic SSTAs change the midlatitude wave train and modify summer rainfall over South and North China, in conjunction with the anomalous tropical circulation due to the Indian Ocean SSTAs. In the northward migration pattern, the North Pacific SSTAs alter spring rainfall over South China by varying the low-level western North Pacific subtropical high and the zonal land–sea thermal contrast over East Asia. Afterward, the ENSO-like SSTAs induce a Pacific–Japan teleconnection and shift the anomalous rainband northward to the Yangtze–Huai River and North China in summer. The seasonal switch of the SSTAs regulating these two modes is physically linked from boreal spring to summer. This mechanism provides potential seasonal predictability of the seasonal evolution of the anomalous rainband over East China.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Boqi Liu, liubq@cma.gov.cn
Save