The Fast Response of the Atmospheric Water Cycle to Anthropogenic Black Carbon Aerosols during Summer in East Asia

Chen Pan aJiangsu Meteorological Observatory, Jiangsu Meteorological Bureau, Nanjing, China
bKey Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing, China
cKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
eKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology, Nanjing, China
fJoint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Chen Pan in
Current site
Google Scholar
PubMed
Close
,
Bin Zhu cKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
eKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology, Nanjing, China
fJoint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Zhu in
Current site
Google Scholar
PubMed
Close
,
Chenwei Fang cKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
eKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology, Nanjing, China
fJoint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Chenwei Fang in
Current site
Google Scholar
PubMed
Close
,
Hanqing Kang cKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
eKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology, Nanjing, China
fJoint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Hanqing Kang in
Current site
Google Scholar
PubMed
Close
,
Zhiming Kang aJiangsu Meteorological Observatory, Jiangsu Meteorological Bureau, Nanjing, China

Search for other papers by Zhiming Kang in
Current site
Google Scholar
PubMed
Close
,
Hao Chen aJiangsu Meteorological Observatory, Jiangsu Meteorological Bureau, Nanjing, China
bKey Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing, China

Search for other papers by Hao Chen in
Current site
Google Scholar
PubMed
Close
,
Duanyang Liu bKey Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing, China
gJiangsu Institute of Meteorological Sciences, Nanjing, China
hNanjing Joint Institute for Atmospheric Sciences, Nanjing, China

Search for other papers by Duanyang Liu in
Current site
Google Scholar
PubMed
Close
, and
Xuewei Hou cKey Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
dCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
eKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology, Nanjing, China
fJoint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xuewei Hou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Studies of the climate effects of black carbon (BC) in East Asia are not abundant and the effects remain uncertain. Using the Community Earth System Model version 1 (CESM1) with Peking University’s emissions data, the fast response of the atmospheric water cycle to anthropogenic BC during summer in East Asia is investigated in this study. Results show that the CESM1-simulated BC concentration and its direct effective radiative forcing are comparable to observations. With the combination of aerosol–radiation interaction (ARI) and non-aerosol–radiation interaction (including aerosol–cloud interaction and surface albedo effects), anthropogenic BC induces a “wetter south and drier north” pattern over East Asia during summer. Also, anthropogenic BC affects the summer precipitation primarily through changing moisture transport rather than altering local evaporation over East Asia. Using the self-developed atmospheric water tracer method, the responses of dominant moisture sources [the tropical Indian Ocean (TIO) and northwest Pacific] to anthropogenic BC are investigated. Results show that the moisture originating from southwest monsoon-related sources (especially the TIO) is more responsive to anthropogenic BC effects over East Asia. In particular, differing from total precipitation, TIO-supplied precipitation shows a significant response to the ARI of anthropogenic BC over East Asia. Process analyses show that anthropogenic BC affects the southwest monsoon-related moisture supplies primarily via advection, deep convection, and cloud macrophysics. Interestingly, the anthropogenic BC-induced changes of TIO-supplied water vapor in these three processes are all dominated by the ARI over East Asia.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0492.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin Zhu, binzhu@nuist.edu.cn

Abstract

Studies of the climate effects of black carbon (BC) in East Asia are not abundant and the effects remain uncertain. Using the Community Earth System Model version 1 (CESM1) with Peking University’s emissions data, the fast response of the atmospheric water cycle to anthropogenic BC during summer in East Asia is investigated in this study. Results show that the CESM1-simulated BC concentration and its direct effective radiative forcing are comparable to observations. With the combination of aerosol–radiation interaction (ARI) and non-aerosol–radiation interaction (including aerosol–cloud interaction and surface albedo effects), anthropogenic BC induces a “wetter south and drier north” pattern over East Asia during summer. Also, anthropogenic BC affects the summer precipitation primarily through changing moisture transport rather than altering local evaporation over East Asia. Using the self-developed atmospheric water tracer method, the responses of dominant moisture sources [the tropical Indian Ocean (TIO) and northwest Pacific] to anthropogenic BC are investigated. Results show that the moisture originating from southwest monsoon-related sources (especially the TIO) is more responsive to anthropogenic BC effects over East Asia. In particular, differing from total precipitation, TIO-supplied precipitation shows a significant response to the ARI of anthropogenic BC over East Asia. Process analyses show that anthropogenic BC affects the southwest monsoon-related moisture supplies primarily via advection, deep convection, and cloud macrophysics. Interestingly, the anthropogenic BC-induced changes of TIO-supplied water vapor in these three processes are all dominated by the ARI over East Asia.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0492.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin Zhu, binzhu@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.59 MB)
Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, https://doi.org/10.1029/1999JD901161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, A. J., H. Sodemann, J. U. L. Baldini, S. F. M. Breitenbach, K. R. Johnson, J. van Hunen, and P. Zhang, 2015: Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O. J. Geophys. Res. Atmos., 120, 58505862, https://doi.org/10.1002/2014JD022919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 2767, https://doi.org/10.1080/02786820500421521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cycles, 21, GB2018, https://doi.org/10.1029/2006GB002840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, https://doi.org/10.1175/JCLI-D-12-00493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. D. Xu, and T. Zhao, 2013: Main moisture sources affecting lower Yangtze River Basin in boreal summers during 2004–2009. Int. J. Climatol., 33, 10351046, https://doi.org/10.1002/joc.3495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, K. C., H. W. Tong, and J. C. Chan, 2008: Water vapor sources associated with the early summer precipitation over China. Climate Dyn., 30, 497517, https://doi.org/10.1007/s00382-007-0301-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and G. J. Zhang, 2004: Impact of absorbing aerosol on precipitation: Dynamic aspects in association with convective available potential energy and convective parameterization closure and dependence on aerosol heating profile. J. Geophys. Res., 109, D22103, https://doi.org/10.1029/2004JD004726.

    • Search Google Scholar
    • Export Citation
  • Cong, Z., K. Kawamura, S. Kang, and P. Fu, 2015: Penetration of biomass-burning emissions from South Asia through the Himalayas: New insights from atmospheric organic acids. Sci. Rep., 5, 9580, https://doi.org/10.1038/srep09580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., H. M. Li, Y. Sun, L.-C. Hong, C. Chou, and T. Zhou, 2013: The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J. Geophys. Res. Atmos., 118, 70247045, https://doi.org/10.1002/jgrd.50565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., L. J. Wilcox, E. J. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: Roles of aerosol–radiation and aerosol–cloud interactions. Climate Dyn., 53, 32353256, https://doi.org/10.1007/s00382-019-04698-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, and L. Gimeno, 2011: Sources of moisture for China and their variations during drier and wetter conditions in 2000–2004: A Lagrangian approach. Climate Res., 5, 215225, https://doi.org/10.3354/cr01043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378, https://doi.org/10.1126/science.1125261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. V., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 131–234.

  • Ganguly, D., P. J. Rasch, H. Wang, and J. Yoon, 2012: Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett., 39, L18804, https://doi.org/10.1029/2012GL053043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 99719974, https://doi.org/10.5194/acp-13-9971-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. A. Zaveri, 2007: Parameterization of optical properties for hydrated internally mixed aerosol. J. Geophys. Res., 112, D10201, https://doi.org/10.1029/2006JD007927.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J. H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, https://doi.org/10.1175/JCLI-D-11-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., K. Liou, Y. Xue, C. Mechoso, W. Li, and Y. Luo, 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201, https://doi.org/10.1029/2005JD006312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater, 2005: Do aircraft black carbon emissions affect cirrus clouds on the global scale? Geophys. Res. Lett., 32, L12814, https://doi.org/10.1029/2005GL022740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D. Q., J. Zhu, Y.-C. Zhang, and A.-N. Huang, 2013: Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models. J. Geophys. Res. Atmos., 118, 90359047, https://doi.org/10.1002/jgrd.50695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2015: Global organic carbon emissions from primary sources from 1960 to 2009. Atmos. Environ., 122, 505512, https://doi.org/10.1016/j.atmosenv.2015.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2013: GPCP version 2.2 SG combined precipitation data set documentation. NASA, 46 pp., ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, M., Z. Li, B. Wan, and M. Cribb, 2016: Impact of aerosols on precipitation from deep convective clouds in eastern China. J. Geophys. Res. Atmos., 121, 96079620, https://doi.org/10.1002/2015JD024246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y., X. Liu, X. Yang, and M. Wang, 2013: A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos. Environ., 70, 5163, https://doi.org/10.1016/j.atmosenv.2012.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knoche, H. R., and H. Kunstmann, 2013: Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa. J. Geophys. Res. Atmos., 118, 12 34512 358, https://doi.org/10.1002/2013JD019976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9, 90019026, https://doi.org/10.5194/acp-9-9001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and K. M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, https://doi.org/10.1029/2006GL027546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, https://doi.org/10.1007/s00382-006-0114-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and Coauthors, 2008: The Joint Aerosol–Monsoon Experiment: A new challenge for monsoon climate research. Bull. Amer. Meteor. Soc., 89, 369384, https://doi.org/10.1175/BAMS-89-3-369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682698, https://doi.org/10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2015: Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524, 335338, https://doi.org/10.1038/nature14677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahajan, S., K. J. Evans, J. J. Hack, and J. E. Truesdale, 2013: Linearity of climate response to increases in black carbon aerosols. J. Climate, 26, 82238237, https://doi.org/10.1175/JCLI-D-12-00715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and S. Li, 2014: Remote influence of South Asian black carbon aerosol on East Asian summer climate. Int. J. Climatol., 34, 3648, https://doi.org/10.1002/joc.3664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21, 28692882, https://doi.org/10.1175/2007JCLI1777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, https://doi.org/10.1126/science.1075159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM5). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Novakov, T., V. Ramanathan, J. E. Hansen, T. W. Kirchstetter, M. Sato, J. E. Sinton, and J. A. Sathaye, 2003: Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett., 30, 1324, https://doi.org/10.1029/2002GL016345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, https://doi.org/10.1029/1998JD200026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model. NCAR Tech. Note NCAR/TN-478CSTR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Pan, C., B. Zhu, J. Gao, and H. Kang, 2017: Source apportionment of atmospheric water over East Asia—A source tracer study in CAM5.1. Geosci. Model Dev., 10, 673688, https://doi.org/10.5194/gmd-10-673-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C., B. Zhu, J. Gao, H. Kang, and T. Zhu, 2019: Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Climate Dyn., 52, 181196, https://doi.org/10.1007/s00382-018-4130-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, https://doi.org/10.1038/ngeo156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333, https://doi.org/10.1073/pnas.0500656102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., D. B. Coleman, N. Mahowald, and D. L. Williamson, 2006: Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Climate, 19, 22432266, https://doi.org/10.1175/JCLI3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samset, B. H., and Coauthors, 2013: Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys., 13, 24232434, https://doi.org/10.5194/acp-13-2423-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samset, B. H., and Coauthors, 2016: Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett., 43, 27822791, https://doi.org/10.1002/2016GL068064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, M., and Coauthors, 2003: Global atmospheric black carbon inferred from AERONET. Proc. Natl. Acad. Sci. USA, 100, 63196324, https://doi.org/10.1073/pnas.0731897100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, https://doi.org/10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stjern, C. W., and Coauthors, 2017: Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J. Geophys. Res. Atmos., 122, 11 46211 481, https://doi.org/10.1002/2017JD027326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streets, D. G., S. Gupta, S. T. Waldhoff, M. Q. Wang, T. C. Bond, and B. Yiyun, 2001: Black carbon emissions in China. Atmos. Environ., 35, 42814296, https://doi.org/10.1016/S1352-2310(01)00179-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Usha, K. H., V. S. Nair, and S. S. Babu, 2020: Modeling of aerosol induced snow albedo feedbacks over the Himalayas and its implications on regional climate. Climate Dyn., 54, 41914210, https://doi.org/10.1007/s00382-020-05222-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., and Coauthors, 2014: Trend in global black carbon emissions from 1960 to 2007. Environ. Sci. Technol., 48, 67806787, https://doi.org/10.1021/es5021422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., L. Lin, M. Yang, Y. Xu, and J. Li, 2017: Disentangling fast and slow responses of the East Asian summer monsoon to reflecting and absorbing aerosol forcings. Atmos. Chem. Phys., 17, 11 07511 088, https://doi.org/10.5194/acp-17-11075-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, M. G. Bosilovich, and R. Wu, 2012: Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res., 117, D05126, https://doi.org/10.1029/2011JD016902.

    • Search Google Scholar
    • Export Citation
  • Westervelt, D. M., Y. You, X. Li, M. Ting, D. E. Lee, and Y. Ming, 2020: Relative importance of greenhouse gases, sulfate, organic carbon, and black carbon aerosol for South Asian monsoon rainfall changes. Geophys. Res. Lett., 47, e2020GL088363, https://doi.org/10.1029/2020GL088363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., C. Fu, Y. Xu, J. P. Tang, W. Wang, and Z. Wang, 2008: Simulation of direct effects of black carbon aerosol on temperature and hydrological cycle in Asia by a regional climate model. Meteor. Atmos. Phys., 100, 179193, https://doi.org/10.1007/s00703-008-0302-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and S.-P. Xie, 2015: Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos. Chem. Phys., 15, 58275833, https://doi.org/10.5194/acp-15-5827-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J. C., T. J. Zhou, Z. Guo, X. L. Chen, L. W. Zou, and Y. Sun, 2017: Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate, 30, 88258840, https://doi.org/10.1175/JCLI-D-16-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, D., X. Tie, Y. Cao, Q. Zhang, H. Tian, K. Bi, Y. Jin, and P. Chen, 2015: In-situ aircraft measurements of the vertical distribution of black carbon in the lower troposphere of Beijing, China, in the spring and summer time. Atmosphere, 6, 713731, https://doi.org/10.3390/atmos6050713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 457 0 0
Full Text Views 2459 1983 80
PDF Downloads 550 138 26