• Achberger, C., D. Chen, and H. Alexandersson, 2006: The surface winds of Sweden during 1999–2000. Int. J. Climatol., 26, 159178, https://doi.org/10.1002/joc.1254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aguilar, E., I. Auer, M. Brunet, T. C. Peterson, and J. Wieringa, 2003: Guidelines on climate metadata and homogenization. World Meteorological Organization Tech. Rep. WMO/TD-1186, 52 pp. https://library.wmo.int/index.php?lvl=notice_display&id=11635#.Xt91kEUzaUk.

  • Alexander, L. V., X. L. Wang, H. Wan, and B. Trewin, 2011: Significant decline in storminess over southeast Australia since the late 19th century. Aust. Meteor. Oceanogr. J., 61, 2330, https://doi.org/10.22499/2.6101.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. Int. J. Climatol., 6, 661675, https://doi.org/10.1002/joc.3370060607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and E. R. Allen, 2016: A review of severe thunderstorms in Australia. Atmos. Res., 178–179, 347366, https://doi.org/10.1016/j.atmosres.2016.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., and Coauthors, 2014: Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J. Climate, 27, 36923712, https://doi.org/10.1175/JCLI-D-13-00652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., J. A. Guijarro, T. R. McVicar, S. M. Vicente-Serrano, D. Chen, S. Jerez, and F. Espírito-Santo, 2016: Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J. Geophys. Res. Atmos., 121, 10591078, https://doi.org/10.1002/2015JD024485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., J. Asin, T. R. McVicar, L. Minola, J. I. Lopez-Moreno, S. M. Vicente-Serrano, and D. Chen, 2018a: Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res., 203, 175188, https://doi.org/10.1016/j.atmosres.2017.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., M. Menendez, T. R. McVicar, A. Acevedo, S. M. Vicente-Serrano, E. Cuevas, L. Minola, and D. Chen, 2018b: Wind speed variability over the Canary Islands, 1948–2014: Focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer. Climate Dyn., 50, 40614081, https://doi.org/10.1007/s00382-017-3861-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., J. A. Guijarro, T. R. McVicar, B. C. Trewin, A. J. Frost, and D. Chen, 2019: An approach to homogenize daily peak wind gusts: An application to the Australian series. Int. J. Climatol., 39, 22602277, https://doi.org/10.1002/joc.5949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellprat, O., V. Guemas, F. Doblas-Reyes, and M. G. Donat, 2019: Towards reliable extreme weather and climate event attribution. Nat. Commun., 10, 1732, https://doi.org/10.1038/s41467-019-09729-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchers Arriagada, N., A. J. Palmer, D. M. J. S. Bowman, G. G. Morgan, B. B. Jalaludin, and F. H. Johnston, 2020: Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust., 213, 282283, https://doi.org/10.5694/mja2.50545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brázdil, R., J. Hostýnek, L. Řezníčková, P. Zahradníček, R. Tolasz, P. Dobrovolný, and P. Štěpánek, 2017: The variability of maximum wind gusts in the Czech Republic between 1961 and 2014. Int. J. Climatol., 37, 19611978, https://doi.org/10.1002/joc.4827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A., and A. Dowdy, 2019: Extreme wind gusts and thunderstorms in South Australia analysed from 1979-2017. Bureau of Meteorology Bureau Research Rep. 034, 63 pp.

  • Cechet, R. P., and L. A. Sanabria, 2012: Statistical comparison of coincident wind gust measurements from Dines and cup anemometers. 15th Australasian Wind Engineering Society Workshop, Sydney, NSW, Australia, Australasian Wind Engineering Society, 97–100.

  • Chand, S. S., and Coauthors, 2019: Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. Wiley Interdiscip. Rev.: Climate Change, 10, e602, https://doi.org/10.1002/wcc.602.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2020: Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus, 72B, 113, https://doi.org/10.1080/16000889.2020.1794236.

    • Search Google Scholar
    • Export Citation
  • Clarke, S. J., S. L. Gray, and N. M. Roberts, 2019: Downstream influence of mesoscale convective systems. Part 2: Influence on ensemble forecast skill and spread. Quart. J. Roy. Meteor. Soc., 145, 29532972, https://doi.org/10.1002/qj.3613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrad, V., and L. W. Pollak, 1950: Methods in Climatology. Harvard University Press, 459 pp.

  • CSIRO and BoM, 2015: Climate change in Australia: Projections for Australia’s NRM Regions. CSIRO and BoM Tech. Rep., 222 pp., https://www.climatechangeinaustralia.gov.au/media/ccia/2.1.6/cms_page_media/168/CCIA_2015_NRM_TechnicalReport_WEB.pdf.

  • Dadaser-Celik, F., and E. Cengiz, 2014: Wind speed trends over Turkey from 1975 to 2006. Int. J. Climatol., 34, 19131927, https://doi.org/10.1002/joc.3810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., 2016: Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Sci. Rep., 6, 20874, https://doi.org/10.1038/srep20874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., 2020: Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Climate Dyn., 54, 30413052, https://doi.org/10.1007/s00382-020-05167-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., and J. L. Catto, 2017: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep., 7, 40359, https://doi.org/10.1038/srep40359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., M. Kay, A. Prasad, and A. Pitman, 2018: The resilience of Australian wind energy to climate change. Environ. Res. Lett., 13, 024014, https://doi.org/10.1088/1748-9326/aaa632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the southern annular mode. Geophys. Res. Lett., 33, L23704, https://doi.org/10.1029/2006GL027721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, https://doi.org/10.1175/MWR-D-12-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guijarro, J. A., 2018: Homogenization of climate series with Climatol. 22 pp., http://www.climatol.eu/homog_climatol-en.pdf.

  • Guo, H., M. Xu, and Q. Hu, 2011: Changes in near-surface wind speed in China: 1969-2005. Int. J. Climatol., 31, 349358, https://doi.org/10.1002/joc.2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutiérrez, A., C. Porrini, and R. G. Fovell, 2020: Combination of wind gust models in convective events. J. Wind Eng. Ind. Aerodyn., 199, 104118, https://doi.org/10.1016/j.jweia.2020.104118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20, 24522467, https://doi.org/10.1175/JCLI4134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herring, S. C., A. Hoell, M. P. Hoerling, J. P. Kossin, C. J. Schreck III, and P. A. Stott, 2016: Explaining extreme events of 2015 from a climate perspective. Bull. Amer. Meteor. Soc., 97 (12), S1S145, https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2015.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, J., and J. D. Ginger, 2012: The gust wind speed duration in AS/NZS 1170.2. Aust. J. Struct. Eng., 13, 207218, https://doi.org/10.7158/S12-017.2012.13.3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jakob, D., 2010: Challenges in developing a high-quality surface wind-speed data-set for Australia. Aust. Meteor. Oceanogr. J., 60, 227236, https://doi.org/10.22499/2.6004.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, https://doi.org/10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and I. Simmonds, 1993: A climatology of Southern Hemisphere extratropical cyclones. Climate Dyn., 9, 131145, https://doi.org/10.1007/BF00209750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., and J. D. Gibbons, 1990: Rank Correlation Methods. Oxford University Press, 272 pp.

  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laapas, M., and A. Venäläinen, 2017: Homogenization and trend analysis of monthly mean and maximum wind speed time series in Finland, 1959–2015. Int. J. Climatol., 37, 48034813, https://doi.org/10.1002/joc.5124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. Chen, 2020: Extratropical cyclones over East Asia: Climatology, seasonal cycle, and long-term trend. Climate Dyn., 54, 11311144, https://doi.org/10.1007/s00382-019-05048-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Chen, Z. Li, and G. Fang, 2018: Recent recovery of surface wind speed in northwest China. Int. J. Climatol., 38, 44454458, https://doi.org/10.1002/joc.5679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., K. Yang, J. Qin, and R. Fu, 2013: Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Climate, 26, 28912903, https://doi.org/10.1175/JCLI-D-12-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, https://doi.org/10.1029/2008GL035627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., M. L. Roderick, L. T. Li, X. G. Mo, N. E. Zimmermann, and D. R. Schmatz, 2010: Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys. Res. Lett., 37, L06402, https://doi.org/10.1029/2009GL042255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012a: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., M. L. Roderick, R. J. Donohue, and T. G. Van Niel, 2012b: Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology, 5, 381388, https://doi.org/10.1002/eco.1298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minola, L., C. Azorin-Molina, and D. Chen, 2016: Homogenization and assessment of observed near-surface wind speed trends across Sweden, 1956–2013. J. Climate, 29, 73977415, https://doi.org/10.1175/JCLI-D-15-0636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minola, L., F. Zhang, C. Azorin-Molina, A. A. Safaei Pirooz, R. G. J. Flay, H. Hersbach, and D. Chen, 2020: Near-surface mean and gust wind speeds in ERA5 across Sweden: Towards an improved gust parametrization. Climate Dyn., 55, 887907, https://doi.org/10.1007/s00382-020-05302-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikulin, G., E. Kjellström, U. Hansson, G. Strandberg, and A. Ullerstig, 2010: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus, 63A, 4155, https://doi.org/10.1111/j.1600-0870.2010.00466.x.

    • Search Google Scholar
    • Export Citation
  • Pepler, A., 2020: Record lack of cyclones in southern Australia during 2019. Geophys. Res. Lett., 47, e2020GL088488, https://doi.org/10.1029/2020GL088488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, https://doi.org/10.1029/2007GL031166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., A. Gohm, M. N. Lang, D. Leukauf, I. Stiperski, and J. S. Wagner, 2015: On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain. Front. Earth Sci., 3, 76, https://doi.org/10.3389/feart.2015.00076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, P., G. Zhang, D. Chen, C. Azorin-Molina, and J. A. Guijarro, 2019: Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. Atmos. Res., 215, 111, https://doi.org/10.1016/j.atmosres.2018.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timbal, B., R. Kounkou, and G. A. Mills, 2010: Changes in the risk of cool-season tornadoes over southern Australia due to model projections of anthropogenic warming. J. Climate, 23, 24402449, https://doi.org/10.1175/2009JCLI3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, I., P. Berrisford, R. J. H. Dunn, R. Vautard, and T. R. McVicar, 2014: Land surface wind speed [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S28S29, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., K. Muller, P. Coppin, R. Davy, C. Russell, and A. L. Hirsch, 2012: Long-term wind speed trends over Australia. J. Climate, 25, 170183, https://doi.org/10.1175/2011JCLI4198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2019: Human influence on European winter wind storms such as those of January 2018. Earth Syst. Dyn., 10, 271286, https://doi.org/10.5194/esd-10-271-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venema, V. K. C., and Coauthors, 2012: Benchmarking homogenization algorithms for monthly data. Climate Past, 8, 89115, https://doi.org/10.5194/cp-8-89-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., 1995: Misuses of statistical analysis in climate research. Analysis of Climate Variability: Applications of Statistical Techniques, H. von Storch and A. Navarra, Eds., Springer, 11–26.

    • Crossref
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Amer. Meteor. Soc., 95, 377386, https://doi.org/10.1175/BAMS-D-12-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., and Coauthors, 2016: Natural hazards in Australia: Storms, wind and hail. Climatic Change, 139, 5567, https://doi.org/10.1007/s10584-016-1737-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walz, M. A., M. G. Donat, and G. C. Leckebusch, 2018: Large-scale drivers and seasonal predictability of extreme wind speeds over the North Atlantic and Europe. J. Geophys. Res. Atmos., 123, 11 51811 535, https://doi.org/10.1029/2017JD027958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, H., L. W. Xiaolan, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 12091225, https://doi.org/10.1175/2009JCLI3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. H., X. M. Wang, and Y. B. Khoo, 2013: Extreme wind gust hazard in Australia and its sensitivity to climate change. Nat. Hazards, 67, 549567, https://doi.org/10.1007/s11069-013-0582-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1987: The measurement of gustiness at routine wind stations—A review. IOM Rep. 31, 52 pp., https://library.wmo.int/index.php?lvl=notice_display&id=15514#.X8D3B2j7SUk.

  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2018: Global terrestrial stilling: Does Earth’s greening play a role? Environ. Res. Lett., 13, 124013, https://doi.org/10.1088/1748-9326/aaea84.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Climate Change, 9, 979985, https://doi.org/10.1038/s41558-019-0622-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Coauthors, 2020: Variability of daily maximum wind speed across China, 1975–2016: An examination of likely causes. J. Climate, 33, 27932816, https://doi.org/10.1175/JCLI-D-19-0603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Li, and R. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 2635, https://doi.org/10.1007/s11430-013-4774-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 700 700 42
Full Text Views 109 109 6
PDF Downloads 137 137 7

A Decline of Observed Daily Peak Wind Gusts with Distinct Seasonality in Australia, 1941–2016

View More View Less
  • 1 Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas, Moncada, Valencia, Spain
  • | 2 Department of Earth Sciences–Regional Climate Group, University of Gothenburg, Gothenburg, Sweden
  • | 3 CSIRO Land and Water, Canberra, Australian Capital Territory, Australia
  • | 4 Australian Research Council Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia
  • | 5 State Meteorological Agency (AEMET), Balearic Islands Office, Palma de Mallorca, Spain
  • | 6 Australian Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 7 Australian Bureau of Meteorology, Sydney, New South Wales, Australia
  • | 8 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
  • | 9 Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs and Ministry of Education, Beijing Normal University, Beijing, China
  • | 10 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Wind gusts represent one of the main natural hazards due to their increasing socioeconomic and environmental impacts on, for example, human safety, maritime–terrestrial–aviation activities, engineering and insurance applications, and energy production. However, the existing scientific studies focused on observed wind gusts are relatively few compared to those on mean wind speed. In Australia, previous studies found a slowdown of near-surface mean wind speed, termed “stilling,” but a lack of knowledge on the multidecadal variability and trends in the magnitude (wind speed maxima) and frequency (exceeding the 90th percentile) of wind gusts exists. A new homogenized daily peak wind gusts (DPWG) dataset containing 548 time series across Australia for 1941–2016 is analyzed to determine long-term trends in wind gusts. Here we show that both the magnitude and frequency of DPWG declined across much of the continent, with a distinct seasonality: negative trends in summer–spring–autumn and weak negative or nontrending (even positive) trends in winter. We demonstrate that ocean–atmosphere oscillations such as the Indian Ocean dipole and the southern annular mode partly modulate decadal-scale variations of DPWG. The long-term declining trend of DPWG is consistent with the “stilling” phenomenon, suggesting that global warming may have reduced Australian wind gusts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0590.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cesar Azorin-Molina, cesar.azorin@uv.es

Abstract

Wind gusts represent one of the main natural hazards due to their increasing socioeconomic and environmental impacts on, for example, human safety, maritime–terrestrial–aviation activities, engineering and insurance applications, and energy production. However, the existing scientific studies focused on observed wind gusts are relatively few compared to those on mean wind speed. In Australia, previous studies found a slowdown of near-surface mean wind speed, termed “stilling,” but a lack of knowledge on the multidecadal variability and trends in the magnitude (wind speed maxima) and frequency (exceeding the 90th percentile) of wind gusts exists. A new homogenized daily peak wind gusts (DPWG) dataset containing 548 time series across Australia for 1941–2016 is analyzed to determine long-term trends in wind gusts. Here we show that both the magnitude and frequency of DPWG declined across much of the continent, with a distinct seasonality: negative trends in summer–spring–autumn and weak negative or nontrending (even positive) trends in winter. We demonstrate that ocean–atmosphere oscillations such as the Indian Ocean dipole and the southern annular mode partly modulate decadal-scale variations of DPWG. The long-term declining trend of DPWG is consistent with the “stilling” phenomenon, suggesting that global warming may have reduced Australian wind gusts.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0590.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cesar Azorin-Molina, cesar.azorin@uv.es

Supplementary Materials

    • Supplemental Materials (PDF 3.80 MB)
Save