Enhanced Tropical Eastern Indian Ocean Rainfall Breaks Down the Tropical Easterly Jet–Indian Rainfall Relationship

Sihua Huang aCenter for Monsoon and Environment Research and School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Sihua Huang in
Current site
Google Scholar
PubMed
Close
,
Bin Wang bDepartment of Atmospheric Sciences and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
cEarth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
Zhiping Wen dDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
eInnovation Center of Ocean and Atmosphere System, Zhuhai, China
fJiangsu Collaborative Innovation Center for Climate Change, Nanjing, China

Search for other papers by Zhiping Wen in
Current site
Google Scholar
PubMed
Close
, and
Zesheng Chen gState Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou, China
hSouthern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

Search for other papers by Zesheng Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies found a tight connection between the tropical easterly jet (TEJ) and Indian summer monsoon rainfall (ISMR). Here we show that the TEJ–ISMR relationship is nonstationary and breaks down from 1994 to 2003 (epoch P2), in contrast to the significant positive correlation during epochs P1 (1979–93) and P3 (2004–16). The breakdown of the TEJ–ISMR relationship concurs with the increased rainfall variability over the tropical eastern Indian Ocean (TEIO). The enhanced TEIO rainfall anomalies excite a significant lower-level cyclonic circulation that reduces the ISMR and meanwhile strengthen the upper-level divergence and excite a pair of upper-level anticyclones to the west of the TEIO as Rossby wave responses, both accelerating the TEJ. Thus, the TEIO rainfall plays a more important role than the ISMR in TEJ variability during P2, causing the breakdown of the TEJ–ISMR relationship. In contrast, a relatively weak amplitude of the TEIO rainfall during P1 and P3 was unable to change the positive TEJ–ISMR relationship. The changes in the TEIO rainfall variability are mainly attributed to the increased SST variability over the tropical southeastern Indian Ocean, but their cause remains elusive.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiping Wen, zpwen@fudan.edu.cn

Abstract

Previous studies found a tight connection between the tropical easterly jet (TEJ) and Indian summer monsoon rainfall (ISMR). Here we show that the TEJ–ISMR relationship is nonstationary and breaks down from 1994 to 2003 (epoch P2), in contrast to the significant positive correlation during epochs P1 (1979–93) and P3 (2004–16). The breakdown of the TEJ–ISMR relationship concurs with the increased rainfall variability over the tropical eastern Indian Ocean (TEIO). The enhanced TEIO rainfall anomalies excite a significant lower-level cyclonic circulation that reduces the ISMR and meanwhile strengthen the upper-level divergence and excite a pair of upper-level anticyclones to the west of the TEIO as Rossby wave responses, both accelerating the TEJ. Thus, the TEIO rainfall plays a more important role than the ISMR in TEJ variability during P2, causing the breakdown of the TEJ–ISMR relationship. In contrast, a relatively weak amplitude of the TEIO rainfall during P1 and P3 was unable to change the positive TEJ–ISMR relationship. The changes in the TEIO rainfall variability are mainly attributed to the increased SST variability over the tropical southeastern Indian Ocean, but their cause remains elusive.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiping Wen, zpwen@fudan.edu.cn
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, X. Wang, C. He, and Z. Chen, 2017: An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dyn., 48, 191207, https://doi.org/10.1007/s00382-016-3069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and H. Van Loon, 1987: Interannual variation of the tropical easterly jet. Mon. Wea. Rev., 115, 17391759, https://doi.org/10.1175/1520-0493(1987)115<1739:IVOTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and M. Yen, 1991: Intraseasonal variations of the tropical easterly jet during the 1979 northern summer. Tellus, 43A, 213225, https://doi.org/10.3402/tellusa.v43i3.11928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Du, Z. Wen, R. Wu, and C. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming. Climate Dyn., 50, 47074719, https://doi.org/10.1007/s00382-017-3899-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Du, Z. Wen, R. Wu, and S. P. Xie, 2019: Evolution of south tropical Indian Ocean warming and the climatic impacts following strong El Niño events. J. Climate, 32, 73297347, https://doi.org/10.1175/JCLI-D-18-0704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1964: Investigations on the tropical easterly jet. Bonner Meteorology Abhandlungen, 83 pp., https://www2.meteo.uni-bonn.de/bibliothek/Flohn_Publikationen/K141-K190_1959-1965/K176.pdf.

  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. E. Nicholson, and A. I. Barcilon, 2002: Easterly waves over Africa. Part II: Observed and modeled contrasts between wet and dry years. Mon. Wea. Rev., 130, 212225, https://doi.org/10.1175/1520-0493(2002)130<0212:EWOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, S., Z. Wen, Z. Chen, X. Li, R. Chen, and Y. Guo, 2019: Interdecadal change in the relationship between the tropical easterly jet and tropical sea surface temperature anomalies in boreal summer. Climate Dyn., 53, 21192131, https://doi.org/10.1007/s00382-019-04801-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, S., B. Wang, and Z. Wen, 2020: Dramatic weakening of the tropical easterly jet projected by CMIP6 models. J. Climate, 33, 84398455, https://doi.org/10.1175/JCLI-D-19-1002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., and N. Tosdevin, 1989: The tropical easterly jet and Sudan rainfall: A review. Theor. Appl. Climatol., 39, 179187, https://doi.org/10.1007/BF00867945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., T. N. Krishnamurti, and C. Depradine, 1972: On scale interactions in the tropics during northern summer. J. Atmos. Sci., 29, 698706, https://doi.org/10.1175/1520-0469(1972)029<0698:OSIITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koteswaram, P., 1958: The easterly jet stream in the tropics. Tellus, 10, 4357, https://doi.org/10.3402/tellusa.v10i1.9220.

  • Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579595, https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, https://doi.org/10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and Y. Ding, 1989: Climatic study on the summer tropical easterly jet at 200 hPa. Adv. Atmos. Sci., 6, 215226, https://doi.org/10.1007/BF02658017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madhu, V., 2014: Variation of zonal winds in the upper troposphere and lower stratosphere in association with deficient and excess Indian summer monsoon scenario. Atmos. Climate Sci., 04, 685695, https://doi.org/10.4236/acs.2014.44062.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/JMSJ1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagarjuna Rao, D., G. George, C. T. Sabeerali, D. A. Ramu, and S. A. Rao, 2015: Changing relationship between the tropical easterly jet and the Indian summer monsoon rainfall: Role of Indian Ocean warming. Indian J. Geo-Mar. Sci., 44, 16781683.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and J. P. Grist, 2003: The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J. Climate, 16, 10131030, https://doi.org/10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattanaik, D. R., and V. Satyan, 2000: Fluctuations of tropical easterly jet during contrasting monsoons over India: A GCM study. Meteor. Atmos. Phys., 75, 5160, https://doi.org/10.1007/s007030070015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghavan, K., 1973: Tibetan anticyclone and tropical easterly jet. Pure Appl. Geophys., 110, 21302142, https://doi.org/10.1007/BF00876576.

  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, B. R. S., D. V. B. Rao, and V. B. Rao, 2004: Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys. Res. Lett., 31, L14103, https://doi.org/10.1029/2004GL019817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S., and J. Srinivasan, 2016: The impact of latent heating on the location and strength of the tropical easterly jet. Meteor. Atmos. Phys., 128, 247261, https://doi.org/10.1007/s00703-015-0407-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., C. C. Ferreira, S. H. Franchito, and S. S. V. S. Ramakrishna, 2008: In a changing climate weakening tropical easterly jet induces more violent tropical storms over the north Indian Ocean. Geophys. Res. Lett., 35, L15710, https://doi.org/10.1029/2008GL034729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roja Raman, M., V. V. M. Jagannadha Rao, M. Venkat Ratnam, M. Rajeevan, S. V. B. Rao, D. Narayana Rao, and N. Prabhakara Rao, 2009: Characteristics of the tropical easterly jet: Long-term trends and their features during active and break monsoon phases. J. Geophys. Res., 114, D19105, https://doi.org/10.1029/2009JD012065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankar-Rao, M., K. M. Lau, and S. Yang, 1996: On the relationship between Eurasian snow cover and the Asian summer monsoon. Int. J. Climatol., 16, 605616, https://doi.org/10.1002/(SICI)1097-0088(199606)16:6<605::AID-JOC41>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathiyamoorthy, V., 2005: Large scale reduction in the size of the tropical easterly jet. Geophys. Res. Lett., 32, L14802, https://doi.org/10.1029/2005GL022956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathiyamoorthy, V., P. K. Pal, and P. C. Joshi, 2004: Influence of the upper-tropospheric wind shear upon cloud radiative forcing in the Asian monsoon region. J. Climate, 17, 27252735, https://doi.org/10.1175/1520-0442(2004)017<2725:IOTUWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathiyamoorthy, V., P. K. Pal, and P. C. Joshi, 2007: Intraseasonal variability of the tropical easterly jet. Meteor. Atmos. Phys., 96, 305316, https://doi.org/10.1007/s00703-006-0214-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.

  • Tanaka, M., 1982: Interannual the fluctuations of the tropical easterly monsoon in the Asian region. J. Meteor. Soc. Japan, 60, 865875, https://doi.org/10.2151/jmsj1965.60.3_865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786, https://doi.org/10.1002/QJ.49712555502.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Venkat Ratnam, M., B. V. K. Murthy, and A. Jayaraman, 2013: Is the trend in TEJ reversing over the Indian subcontinent? Geophys. Res. Lett., 40, 34463449, https://doi.org/10.1002/grl.50519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., I. S. Kang, and J. Y. Lee, 2004: Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818, https://doi.org/10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models. J. Climate, 33, 64716489, https://doi.org/10.1175/JCLI-D-19-0993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J. Climate, 15, 399419, https://doi.org/10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, and C. Li, 2015: Effect of easterly jet on formation of initial vortex of tropical cyclone Nargis over Bay of Bengal. Trans. Atmos. Sci., 38, 18.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and J. Fasullo, 2003: Monsoon: Dynamical theory. Encycl. Atmos. Sci., 3, 13701386, https://doi.org/10.1016/B0-12-227090-8/00236-0.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, https://doi.org/10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., J. Methven, S. Woolnough, K. Hodges, and B. Hoskins, 2018: Linking African easterly wave activity with equatorial waves and the influence of Rossby waves from the Southern Hemisphere. J. Atmos. Sci., 75, 17831809, https://doi.org/10.1175/JAS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 415 0 0
Full Text Views 1632 1004 57
PDF Downloads 637 164 21