Evaluating the Diurnal and Semidiurnal Cycle of Precipitation in CMIP6 Models Using Satellite- and Ground-Based Observations

Shuaiqi Tang aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Shuaiqi Tang in
Current site
Google Scholar
PubMed
Close
,
Peter Gleckler aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Peter Gleckler in
Current site
Google Scholar
PubMed
Close
,
Shaocheng Xie aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Shaocheng Xie in
Current site
Google Scholar
PubMed
Close
,
Jiwoo Lee aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Jiwoo Lee in
Current site
Google Scholar
PubMed
Close
,
Min-Seop Ahn aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Min-Seop Ahn in
Current site
Google Scholar
PubMed
Close
,
Curt Covey aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Curt Covey in
Current site
Google Scholar
PubMed
Close
, and
Chengzhu Zhang aLawrence Livermore National Laboratory, Livermore, California

Search for other papers by Chengzhu Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnal and semidiurnal cycle of precipitation simulated from CMIP6 models during 1996–2005 are evaluated globally between 60°S and 60°N as well as at 10 selected locations representing three categories of diurnal cycle of precipitation: 1) afternoon precipitation over land, 2) early morning precipitation over ocean, and 3) nocturnal precipitation over land. Three satellite-based and two ground-based rainfall products are used to evaluate the climate models. Globally, the ensemble mean of CMIP6 models shows a diurnal phase of 3 to 4 h earlier over land and 1 to 2 h earlier over ocean when compared with the latest satellite products. These biases are in line with what were found in previous versions of climate models but reduced compared to the CMIP5 ensemble mean. Analysis at the selected locations complemented with in situ measurements further reinforces these results. Several CMIP6 models have shown a significant improvement in the diurnal cycle of precipitation compared to their CMIP5 counterparts, notably in delaying afternoon precipitation over land. This can be attributed to the use of more sophisticated convective parameterizations. Most models are still unable to capture the nocturnal peak associated with elevated convection and propagating mesoscale convective systems, with a few exceptions that allow convection to be initiated above the boundary layer to capture nocturnal elevated convection. We also quantify an encouraging consistency between the satellite- and ground-based precipitation measurements despite differing spatiotemporal resolutions and sampling periods, which provides confidence in using them to evaluate the diurnal and semidiurnal cycle of precipitation in climate models.

Tang’s current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shaocheng Xie, xie2@llnl.gov

Abstract

The diurnal and semidiurnal cycle of precipitation simulated from CMIP6 models during 1996–2005 are evaluated globally between 60°S and 60°N as well as at 10 selected locations representing three categories of diurnal cycle of precipitation: 1) afternoon precipitation over land, 2) early morning precipitation over ocean, and 3) nocturnal precipitation over land. Three satellite-based and two ground-based rainfall products are used to evaluate the climate models. Globally, the ensemble mean of CMIP6 models shows a diurnal phase of 3 to 4 h earlier over land and 1 to 2 h earlier over ocean when compared with the latest satellite products. These biases are in line with what were found in previous versions of climate models but reduced compared to the CMIP5 ensemble mean. Analysis at the selected locations complemented with in situ measurements further reinforces these results. Several CMIP6 models have shown a significant improvement in the diurnal cycle of precipitation compared to their CMIP5 counterparts, notably in delaying afternoon precipitation over land. This can be attributed to the use of more sophisticated convective parameterizations. Most models are still unable to capture the nocturnal peak associated with elevated convection and propagating mesoscale convective systems, with a few exceptions that allow convection to be initiated above the boundary layer to capture nocturnal elevated convection. We also quantify an encouraging consistency between the satellite- and ground-based precipitation measurements despite differing spatiotemporal resolutions and sampling periods, which provides confidence in using them to evaluate the diurnal and semidiurnal cycle of precipitation in climate models.

Tang’s current affiliation: Pacific Northwest National Laboratory, Richland, Washington.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shaocheng Xie, xie2@llnl.gov
Save
  • Aves, S., and R. H. Johnson, 2008: The diurnal cycle of convection over the northern South China Sea. J. Meteor. Soc. Japan, 86, 919934, https://doi.org/10.2151/jmsj.86.919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, https://doi.org/10.1256/qj.03.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107, 4732, https://doi.org/10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178190, https://doi.org/10.1175/JCLI3259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. T. Machado, and S. T. Martin, 2016: Spatial variability of the background diurnal cycle of deep convection around the GoAmazon2014/5 field campaign sites. J. Appl. Meteor. Climatol., 55, 15791598, https://doi.org/10.1175/JAMC-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byun, Y.-H., Y.-J. Lim, H. M. Sung, J. Kim, M. Sun, and B.-H. Kim, 2019: NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP AMIP. Earth System Grid Federation, accessed 17 June 2020, https://doi.org/10.22033/ESGF/CMIP6.8350.

    • Crossref
    • Export Citation
  • Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geosci. Model Dev., 11, 29752993, https://doi.org/10.5194/gmd-11-2975-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, https://doi.org/10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., P. J. Gleckler, C. Doutriaux, D. N. Williams, A. Dai, J. Fasullo, K. Trenberth, and A. Berg, 2016: Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models. J. Climate, 29, 44614471, https://doi.org/10.1175/JCLI-D-15-0664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., C. Doutriaux, P. J. Gleckler, K. E. Taylor, K. E. Trenberth, and Y. Zhang, 2018: High-frequency intermittency in observed and model-simulated precipitation. Geophys. Res. Lett., 45, 12 514512 522, https://doi.org/10.1029/2018GL078926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999a: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999b: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., X. Lin, and K.-L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744, https://doi.org/10.1007/s00382-007-0260-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, L., R. S. Plant, and S. H. Derbyshire, 2009: A simple model of convection with memory. J. Geophys. Res., 114, D17202, https://doi.org/10.1029/2008JD011653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, https://doi.org/10.1007/s00382-011-1127-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dix, M., and Coauthors, 2019: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP AMIP. Earth System Grid Federation, accessed 17 June 2020, https://doi.org/10.22033/ESGF/CMIP6.4239.

    • Crossref
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filho, A. J. P., R. E. Carbone, J. D. Tuttle, and H. A. Karam, 2015: Convective rainfall in Amazonia and adjacent tropics. Atmos. Climate Sci., 5, 137161, https://doi.org/10.4236/acs.2015.52011.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., R. K. Sakai, O. L. L. Moraes, R. Cosme de Oliveira, O. C. Acevedo, M. J. Czikowsky, and T. Beldini, 2008: Spatial and temporal rainfall variability near the Amazon-Tapajós confluence. J. Geophys. Res. Biogeosci., 113, G00B11, https://doi.org/10.1029/2007JG000596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, J. A., R. C. Ruscica, and C. G. Menéndez, 2020: The diurnal cycle of precipitation over South America represented by five gridded datasets. Int. J. Climatol., 40, 668686, https://doi.org/10.1002/joc.6229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Y. Hong, Z. L. Flamig, L. Li, and J. Wang, 2010: Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall. J. Appl. Meteor. Climatol., 49, 437452, https://doi.org/10.1175/2009JAMC2302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greco, S., and Coauthors, 1990: Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B. J. Geophys. Res., 95, 17 00117 014, https://doi.org/10.1029/JD095iD10p17001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, https://doi.org/10.1256/qj.03.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., C. Severijns, T. Semmler, S. Stefanescu, and S. Yang, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571364, https://doi.org/10.1175/2010BAMS2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212837, https://doi.org/10.1175/1520-0493(1997)125<2821:DASOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2020: LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics. J. Adv. Model. Earth Syst., 12, e2019MS001892, https://doi.org/10.1029/2019MS001892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2014: Clouds and precipitation associated with hills and mountains. International Geophysics, R. A. Houze, Ed., Academic Press, 369–402.

    • Crossref
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2019: Algorithm Theoretical Basis Document (ATBD) version 5.2 for the NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (I-MERG). NASA GPM, 38 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf.

  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res. Atmos., 110, D23105, https://doi.org/10.1029/2005JD006156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, https://doi.org/10.5194/gmd-7-2039-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, and S. A. Klein, 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophys. Res. Lett., 33, L19809, https://doi.org/10.1029/2006GL027022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junquas, C., K. Takahashi, T. Condom, J.-C. Espinoza, S. Chavez, J.-E. Sicart, and T. Lebel, 2018: Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dyn., 50, 39954017, https://doi.org/10.1007/s00382-017-3858-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, https://doi.org/10.1175/2007JCLI2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007a: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881, https://doi.org/10.1175/JCLI4090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007b: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, https://doi.org/10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., S. D. Schubert, M. J. Suarez, J.-K. E. Schemm, H.-L. Pan, J. Han, and S.-H. Yoo, 2008: Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J. Geophys. Res., 113, D02111, https://doi.org/10.1029/2007JD008984.

    • Search Google Scholar
    • Export Citation
  • Lee, W. L., and Coauthors, 2020: Taiwan Earth System Model version 1: Description and evaluation of mean state. Geosci. Model Dev., 13, 38873904, https://doi.org/10.5194/gmd-13-3887-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System Model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, https://doi.org/10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2020: The Flexible Global Ocean-Atmosphere-Land System Model Grid-point version 3 (FGOALS-g3): Description and evaluation. J. Adv. Model. Earth Syst., 12, e2019MS002012, https://doi.org/10.1029/2019MS002012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, https://doi.org/10.1029/2004GL021054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., A. Bai, and C. Liu, 2009: Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ. Res. Lett., 4, 045203, https://doi.org/10.1088/1748-9326/4/4/045203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., H. Laurent, N. Dessay, and I. Miranda, 2004: Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing. Theor. Appl. Climatol., 78, 6177, https://doi.org/10.1007/s00704-004-0044-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, https://doi.org/10.1029/2011MS000042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., M. Ménégoz, M. Acosta, X. Yepes-Arbós, E. Exarchou, and F. J. Doblas-Reyes, 2020: Replicability of the EC-Earth3 Earth system model under a change in computing environment. Geosci. Model Dev., 13, 11651178, https://doi.org/10.5194/gmd-13-1165-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, https://doi.org/10.1175/2008JHM939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nyquist, H., 1928: Certain topics in telegraph transmission theory. Trans. Amer. Inst. Electr. Eng., 47, 617644, https://doi.org/10.1109/T-AIEE.1928.5055024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, D.-M., and D. D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981, https://doi.org/10.1002/qj.49712454714.

    • Search Google Scholar
    • Export Citation
  • Park, S., 2014a: A unified convection scheme (UNICON). Part I: Formulation. J. Atmos. Sci., 71, 39023930, https://doi.org/10.1175/JAS-D-13-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., 2014b: A unified convection scheme (UNICON). Part II: Simulation. J. Atmos. Sci., 71, 39313973, https://doi.org/10.1175/JAS-D-13-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., J. Shin, S. Kim, E. Oh, and Y. Kim, 2019: Global climate simulated by the Seoul National University Atmosphere Model version 0 with a Unified Convection Scheme (SAM0-UNICON). J. Climate, 32, 29172949, https://doi.org/10.1175/JCLI-D-18-0796.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., P. J. Gleckler, L. R. Leung, and C. Jakob, 2020: Benchmarking simulated precipitation in Earth system models. Bull. Amer. Meteor. Soc., 101, E814E816, https://doi.org/10.1175/BAMS-D-19-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2019: An overview of the atmospheric component of the Energy Exascale Earth System Model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J. Y. Grandpeix, and J. P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, https://doi.org/10.1029/2008GL036779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and J. R. Milford, 1993: On the generation of African squall lines. J. Climate, 6, 11811193, https://doi.org/10.1175/1520-0442(1993)006<1181:OTGOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos e Silva, C. M., R. Gielow, and S. R. de Freitas, 2009: Diurnal and semidiurnal rainfall cycles during the rain season in SW Amazonia, observed via rain gauges and estimated using S-band radar. Atmos. Sci. Lett., 10, 8793, https://doi.org/10.1002/asl.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., 2013: Mechanism of orographic precipitation around the Meghalaya Plateau associated with intraseasonal oscillation and the diurnal cycle. Mon. Wea. Rev., 141, 24512466, https://doi.org/10.1175/MWR-D-12-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, https://doi.org/10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, https://doi.org/10.1175/2011JCLI4104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2003: Multiple time- and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J. Appl. Meteor., 42, 10451059, https://doi.org/10.1175/1520-0450(2003)042<1045:MTASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, C. E., 1949: Communication in the presence of noise. Proc. IRE, 37, 1021, https://doi.org/10.1109/JRPROC.1949.232969.

  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, and B. Imam, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15, 9831001, https://doi.org/10.1175/1520-0442(2002)015<0983:DVOTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, L. M. S., P. Satyamurty, and L. A. T. Machado, 2014: Diurnal variation of precipitation in central Amazon basin. Int. J. Climatol., 34, 35743584, https://doi.org/10.1002/joc.3929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., and Coauthors, 2016: Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment. Atmos. Chem. Phys., 16, 14 24914 264, https://doi.org/10.5194/acp-16-14249-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., and Coauthors, 2019: Differences in eddy-correlation and energy-balance surface turbulent heat flux measurements and their impacts on the large-scale forcing fields at the ARM SGP site. J. Geophys. Res. Atmos., 124, 33013318, https://doi.org/10.1029/2018JD029689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., I. M. Held, N.-C. Lau, and B. J. Soden, 2005: Diurnal cycle of summertime deep convection over North America: A satellite perspective. J. Geophys. Res., 110, D08108, https://doi.org/10.1029/2004JD005275.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, and M. Gehne, 2017: Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeor., 18, 13931412, https://doi.org/10.1175/JHM-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, https://doi.org/10.1007/s10712-009-9079-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys., 46, 414431, https://doi.org/10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2020: Observations for Model Intercomparison Project (Obs4MIPs): Status for CMIP6. Geosci. Model Dev., 13, 29452958, https://doi.org/10.5194/gmd-13-2945-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 19091963, https://doi.org/10.5194/gmd-12-1909-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-C., H.-L. Pan, and H.-H. Hsu, 2015: Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res. Atmos., 120, 10 681610 702, https://doi.org/10.1002/2015JD023337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-C., S. Xie, S. Tang, and W. Lin, 2020: Evaluation of an improved convective triggering function: Observational evidence and SCM tests. J. Geophys. Res. Atmos., 125, e2019JD031651, https://doi.org/10.1029/2019JD031651.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, https://doi.org/10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, D. N., and Coauthors, 2016: A global repository for planet-sized experiments and observations. Bull. Amer. Meteor. Soc., 97, 803816, https://doi.org/10.1175/BAMS-D-15-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worku, L. Y., A. Mekonnen, and C. J. Schreck III, 2019: Diurnal cycle of rainfall and convection over the Maritime Continent using TRMM and ISCCP. Int. J. Climatol., 39, 51915200, https://doi.org/10.1002/joc.6121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725744, https://doi.org/10.1007/s00382-011-0995-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC Climate System Model development and application for climate change studies. J. Meteor. Res., 28, 3456, https://doi.org/10.1007/s13351-014-3041-7.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC_CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2002: Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quart. J. Roy. Meteor. Soc., 128, 10951135, https://doi.org/10.1256/003590002320373229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: Clouds and more: ARM climate modeling best estimate data. Bull. Amer. Meteor. Soc., 91, 1320, https://doi.org/10.1175/2009BAMS2891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., Y. Zhang, S. E. Giangrande, M. P. Jensen, R. McCoy, and M. Zhang, 2014: Interactions between cumulus convection and its environment as revealed by the MC3E sounding array. J. Geophys. Res. Atmos., 119, 11 78411 808, https://doi.org/10.1002/2014JD022011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2018: Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model. J. Adv. Model. Earth Syst., 10, 26182644, https://doi.org/10.1029/2018MS001350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2019: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. J. Adv. Model. Earth Syst., 11, 22902310, https://doi.org/10.1029/2019MS001702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., M. Wang, G. J. Zhang, Z. Guo, Y. Qian, A. Huang, and Y. Zhang, 2020: Simulated precipitation diurnal variation with a deep convective closure subject to shallow convection in Community Atmosphere Model version 5 coupled with CLUBB. J. Adv. Model. Earth Syst., 12, e2020MS002050, https://doi.org/10.1029/2020MS002050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and J. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524, https://doi.org/10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., S. Xie, R. T. Cederwall, and J. J. Yio, 2001: Description of the ARM operational objective analysis system. ARM Tech. Rep. ARM-TR-005, 26 pp.

    • Crossref
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Yatagai, 2014: Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int. J. Climatol., 34, 27492762, https://doi.org/10.1002/joc.3872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X., J. C. Golaz, S. Xie, Q. Tang, W. Lin, M. Zhang, H. Y. Ma, and E. L. Roesler, 2019: The summertime precipitation bias in E3SM atmosphere model version 1 over the central United States. J. Geophys. Res. Atmos., 124, 89358952, https://doi.org/10.1029/2019JD030662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010, https://doi.org/10.1175/2008JCLI2028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 741 0 0
Full Text Views 2263 960 72
PDF Downloads 1415 282 45