Delayed Impact of Indian Ocean Warming on the East Asian Surface Temperature Variation in Boreal Summer

Sunyong Kim aDivision of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea

Search for other papers by Sunyong Kim in
Current site
Google Scholar
PubMed
Close
and
Jong-Seong Kug aDivision of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea

Search for other papers by Jong-Seong Kug in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A significant negative relationship is found between the summer mean north Indian Ocean sea surface temperature (SST) and East Asian surface temperature anomalies. However, the relationship is distinctively different for each month and shows a time-lagged relation rather than a simultaneous one. The north Indian Ocean warming in June is responsible for significant cold anomalies over the region of the Korean Peninsula and Japan (KJ region) that peak in July, exhibiting a 1-month leading role. The SST increase is closely associated with enhanced convective activity in the region in June, but the relationship between SST and resultant precipitation is substantially weakened afterward. This dependency of the precipitation sensitivity on SST anomalies is related to the climatological evolution of SST. The relatively low background SST due to the strengthening of southwesterly monsoons in the late summer can weaken the sensitivity of the precipitation to SST anomalies, yet the background SST in June is strong enough to maintain an increased sensitivity of precipitation. Thus, the Indian Ocean warming in June effectively drives atmospheric Kelvin waves that propagate into the equatorial western Pacific. In the western North Pacific (WNP), the resultant Kelvin wave–induced Ekman divergence triggers suppressed convection and anticyclonic anomalies. The WNP suppressed convection and anticyclonic anomalies move slowly northeastward until they are located near 20°N through the local air–sea interaction, and act as a source of the Pacific–Japan teleconnection. This teleconnection pathway brings clod surface anomalies to the KJ region due to the cyclonic circulation that causes the radiative and horizontal advection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jong-Seong Kug, jskug1@gmail.com

Abstract

A significant negative relationship is found between the summer mean north Indian Ocean sea surface temperature (SST) and East Asian surface temperature anomalies. However, the relationship is distinctively different for each month and shows a time-lagged relation rather than a simultaneous one. The north Indian Ocean warming in June is responsible for significant cold anomalies over the region of the Korean Peninsula and Japan (KJ region) that peak in July, exhibiting a 1-month leading role. The SST increase is closely associated with enhanced convective activity in the region in June, but the relationship between SST and resultant precipitation is substantially weakened afterward. This dependency of the precipitation sensitivity on SST anomalies is related to the climatological evolution of SST. The relatively low background SST due to the strengthening of southwesterly monsoons in the late summer can weaken the sensitivity of the precipitation to SST anomalies, yet the background SST in June is strong enough to maintain an increased sensitivity of precipitation. Thus, the Indian Ocean warming in June effectively drives atmospheric Kelvin waves that propagate into the equatorial western Pacific. In the western North Pacific (WNP), the resultant Kelvin wave–induced Ekman divergence triggers suppressed convection and anticyclonic anomalies. The WNP suppressed convection and anticyclonic anomalies move slowly northeastward until they are located near 20°N through the local air–sea interaction, and act as a source of the Pacific–Japan teleconnection. This teleconnection pathway brings clod surface anomalies to the KJ region due to the cyclonic circulation that causes the radiative and horizontal advection.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jong-Seong Kug, jskug1@gmail.com
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R., and Coauthors, 2001: Is there an Indian Ocean dipole and is it independent of the El Niño–Southern Oscillation. CLIVAR Exchanges, Vol. 6, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 18–22.

  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipole-like variability of sea surface temperature in the tropical Indian Ocean. J. Climate, 15, 13581368, https://doi.org/10.1175/1520-0442(2002)015<1358:ODVOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, T.-C., H.-H. Hsu, and C.-C. Hong, 2016: Enhanced influences of tropical Atlantic SST on WNP–NIO atmosphere–ocean coupling since the early 1980s. J. Climate, 29, 65096525, https://doi.org/10.1175/JCLI-D-15-0807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2018: Modulation of spring northern tropical Atlantic sea surface temperature on the El Niño–Southern Oscillation–East Asian summer monsoon connection. Int. J. Climatol., 38, 50205029, https://doi.org/10.1002/joc.5710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K. S., C. C. Wu, and E. J. Cha, 2010: Change of tropical cyclone activity by Pacific–Japan teleconnection pattern in the western North Pacific. J. Geophys. Res., 115, D19114, https://doi.org/10.1029/2010JD013866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, P. H., C. H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, https://doi.org/10.1029/2010JD015554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2009: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Düing, W., and A. Leetmaa, 1980: Arabian Sea cooling: A preliminary heat budget. J. Phys. Oceanogr., 10, 307312, https://doi.org/10.1175/1520-0485(1980)010<0307:ASCAPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 10191034, https://doi.org/10.2151/jmsj.2004.1019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. Joseph, and N. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, https://doi.org/10.1038/312141a0.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, D. Nath, G. Huang, and W. Tao, 2015: Diverse influences of ENSO on the East Asian–western Pacific winter climate tied to different ENSO properties in CMIP5 models. J. Climate, 28, 21872202, https://doi.org/10.1175/JCLI-D-14-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D., and N. K. Larkin, 1996: The COADS sea level pressure signal: A near-global El Niño composite and time series view, 1946–1993. J. Climate, 9, 30253055, https://doi.org/10.1175/1520-0442(1996)009<3025:TCSLPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: Dipoles, temperature gradients, and tropical climate anomalies. Bull. Amer. Meteor. Soc., 83, 735738, https://doi.org/10.1175/1520-0477(2002)083<0735:WLACNM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., T. C. Chang, and H. H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 37153722, https://doi.org/10.1002/2013JD021394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, and R. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Climate, 24, 53655377, https://doi.org/10.1175/2011JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X. Qu, and R. Huang, 2012: The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer. Adv. Atmos. Sci., 29, 91100, https://doi.org/10.1007/s00376-011-0209-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, S.-P. Xie, and S.-M. Long, 2019: Effect of the mean flow on the anomalous anticyclone over the Indo-northwest Pacific in post-El Niño summers. Climate Dyn., 53, 57255741, https://doi.org/10.1007/s00382-019-04893-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2007: Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J. Climate, 20, 29372960, https://doi.org/10.1175/JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., 1992: The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. J. Meteor. Res., 6, 2537, http://jmr.cmsjournal.net/en/article/id/388.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., C. B. Montégut, J-J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 56035623, https://doi.org/10.1175/2008JCLI2158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., and L. Huo, 2018: Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 144, 14901500, https://doi.org/10.1002/qj.3296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. K., and Coauthors, 2019: Possible impact of the diabatic heating over the Indian subcontinent on heat waves in South Korea. Int. J. Climatol., 39, 11661180, https://doi.org/10.1002/joc.5869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., and J.-S. Kug, 2018: What controls ENSO teleconnection to East Asia? Role of western North Pacific precipitation in ENSO teleconnection to East Asia. J. Geophys. Res. Atmos., 123, 10 406410, 422, https://doi.org/10.1029/2018JD028935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., H.-Y. Son, and J.-S. Kug, 2017: How well do climate models simulate atmospheric teleconnections over the North Pacific and East Asia associated with ENSO? Climate Dyn., 48, 971985, https://doi.org/10.1007/s00382-016-3121-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., H.-Y. Son, and J.-S. Kug, 2018: Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific. Climate Dyn., 51, 43454355, https://doi.org/10.1007/s00382-017-3779-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 54355453, https://doi.org/10.1175/2011JCLI4099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R., J. Oh, and H. Chaudhari, 2010: Delayed influence of the Indian Ocean dipole mode on the East Asia–west Pacific monsoon: Possible mechanism. Int. J. Climatol., 30, 197209, https://doi.org/10.1002/JOC.1890.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., G. Gollan, R. J. Greatbatch, and R. Lu, 2018: Intraseasonal variation of the East Asian summer monsoon associated with the Madden–Julian oscillation. Atmos. Sci. Lett., 19, e794, https://doi.org/10.1002/asl.794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., G. Gollan, R. J. Greatbatch, and R. Lu, 2019: Impact of the MJO on the interannual variation of the Pacific–Japan mode of the East Asian summer monsoon. Climate Dyn., 52, 34893501, https://doi.org/10.1007/s00382-018-4328-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lu, R., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771783, https://doi.org/10.2151/jmsj.79.771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, https://doi.org/10.1175/2008JCLI2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. K. Kundu, 1989: A numerical investigation of sea surface temperature variability in the Arabian Sea. J. Geophys. Res., 94, 16 09716 114, https://doi.org/10.1029/JC094iC11p16097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meenu, S., K. Parameswaran, and K. Rajeev, 2012: Role of sea surface temperature and wind convergence in regulating convection over the tropical Indian Ocean. J. Geophys. Res., 117, D14102, https://doi.org/10.1029/2011JD016947.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., R. Seager, and P. Thoppil, 2007: Arabian Sea response to monsoon variations. Paleoceanography, 22, PA4217, https://doi.org/10.1029/2007PA001467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., H. Chaudhari, and R. Kripalani, 2005: Impact of IODM and ENSO on the East Asian monsoon: Simulations through NCAR community atmospheric model. Korean J. Agric. For. Meteor., 7, 240249.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2006: A role of zonal gradient of SST between the Indian Ocean and the western Pacific in localized convection around the Philippines. SOLA, 2, 176179, https://doi.org/10.2151/sola.2006-045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajendran, K., R. S. Nanjundiah, S. Gadgil, and J. Srinivasan, 2012: How good are the simulations of tropical SST–rainfall relationship by IPCC AR4 atmospheric and coupled models? J. Earth Syst. Sci., 121, 595610, https://doi.org/10.1007/s12040-012-0185-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X., R. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., 2014: Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—and its quantification. Climate Dyn., 43, 11591169, https://doi.org/10.1007/s00382-013-1881-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST–precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, https://doi.org/10.1007/s00382-012-1547-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabin, T., C. Babu, and P. Joseph, 2013: SST–convection relation over tropical oceans. Int. J. Climatol., 33, 14241435, https://doi.org/10.1002/joc.3522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S. P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, H.-Y., J.-Y. Park, J.-S. Kug, J. Yoo, and C-H. Kim, 2014: Winter precipitation variability over Korean Peninsula associated with ENSO. Climate Dyn., 42, 31713186, https://doi.org/10.1007/s00382-013-2008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2003: The scatter in tropical average precipitation anomalies. J. Climate, 16, 39663977, https://doi.org/10.1175/1520-0442(2003)016<3966:TSITAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., and T. Kubota, 2005: East–west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, https://doi.org/10.1029/2005GL023010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, https://doi.org/10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuyuki, T., and K. Kurihara, 1989: Impact of convective activity in the western tropical Pacific on the East Asian summer circulation. J. Meteor. Soc. Japan, 67, 231247, https://doi.org/10.2151/jmsj1965.67.2_231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 14851493, https://doi.org/10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., N. E. Graham, and C. Gautier, 1993: Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection. J. Climate, 6, 331353, https://doi.org/10.1175/1520-0442(1993)006<0331:COTHRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., S.-P. Xie, and Y. Kosaka, 2018: Indo-western Pacific climate variability: ENSO forcing and internal dynamics in a tropical Pacific pacemaker simulation. J. Climate, 31, 10 12310 139, https://doi.org/10.1175/JCLI-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., S.-P. Xie, and Y. Kosaka, 2020: ENSO-unrelated variability in Indo–northwest Pacific climate: Regional coupled ocean–atmospheric feedback. J. Climate, 33, 40954108, https://doi.org/10.1175/JCLI-D-19-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1979: A statistical study of the relationships between ocean surface temperatures and the Indian monsoon. J. Atmos. Sci., 36, 22792291, https://doi.org/10.1175/1520-0469(1979)036<2279:ASSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170, https://doi.org/10.1007/s00382-005-0003-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S. W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, D08101, https://doi.org/10.1029/2009JD012999.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, https://doi.org/10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, Y. Du, G. Huang, and H. Tokinaga, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, H., and R. Lu, 2011: Subseasonal variation in ENSO-related East Asian rainfall anomalies during summer and its role in weakening the relationship between the ENSO and summer rainfall in eastern China since the late 1970s. J. Climate, 24, 22712284, https://doi.org/10.1175/2010JCLI3747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, W. Zhou, and C. Li, 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, https://doi.org/10.1002/joc.1678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., S. Chen, W. Chen, S. Yao, D. Nath, and B. Yu, 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dyn., 53, 20312046, https://doi.org/10.1007/s00382-019-04762-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., S. Chen, S.-L. Yao, and D. Nath, 2020: Combined impact of tropical central-eastern Pacific and North Atlantic sea surface temperature on precipitation variation in monsoon transitional zone over China during August–September. Int. J. Climatol., 40, 13161327, https://doi.org/10.1002/joc.6231.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 444 0 0
Full Text Views 1296 605 78
PDF Downloads 781 180 28