• Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, https://doi.org/10.1175/JCLI-D-15-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, H. S., C. Mbengue, and T. Woollings, 2018: Seasonal sensitivity of the Hadley cell and cross-hemispheric responses to diabatic heating in an idealized GCM. Geophys. Res. Lett., 45, 25332541, https://doi.org/10.1002/2018GL077013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y. T. Hwang, X. Liu, D. M. Frierson, and D. L. Hartmann, 2013: The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res. Atmos., 118, 51365146, https://doi.org/10.1002/jgrd.50461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, https://doi.org/10.1029/2007GL031200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, https://doi.org/10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and A. Voigt, 2017: Why future shifts in tropical precipitation will likely be small: The location of the tropical rain belt and the hemispheric contrast of energy input to the atmosphere. Climate Extremes: Patterns and Mechanisms, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 115–137, https://doi.org/10.1002/9781119068020.ch8.

    • Crossref
    • Export Citation
  • Duffy, M. L., P. A. O’Gorman, and L. E. Back, 2020: Importance of Laplacian of low-level warming for the response of precipitation to climate change over tropical oceans. J. Climate, 33, 44034417, https://doi.org/10.1175/JCLI-D-19-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., 2015: Seasonal changes in tropical SST and the surface energy budget under global warming projected by CMIP5 models. J. Climate, 28, 65036515, https://doi.org/10.1175/JCLI-D-15-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., S. P. Xie, C. Deser, and S. M. Kang, 2017: Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett., 44, 94499457, https://doi.org/10.1002/2017GL074972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., and L. Wu, 2013: A study of response of the equatorial Pacific SST to doubled-CO2 forcing in the coupled CAM–1.5-layer reduced-gravity ocean model. J. Phys. Oceanogr., 43, 12881300, https://doi.org/10.1175/JPO-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and et al. , 2019: ETIN-MIP extratropical–tropical interaction model intercomparison project–protocol and initial results. Bull. Amer. Meteor. Soc., 100, 25892606, https://doi.org/10.1175/BAMS-D-18-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. Y., J. C. Chiang, K. Matsumoto, and K. S. Tokos, 2011: Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications. Paleoceanography, 26, PA1214, https://doi.org/10.1029/2010PA002004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2016: Does humidity’s seasonal cycle affect the annual-mean tropical precipitation response to sulfate aerosol forcing? J. Climate, 29, 14511460, https://doi.org/10.1175/JCLI-D-15-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Climate, 26, 754771, https://doi.org/10.1175/JCLI-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, https://doi.org/10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., K. L. Smith, P. A. O’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933, https://doi.org/10.1175/JCLI3931.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. Alexander, and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534, https://doi.org/10.1175/2008JCLI2220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., S. Bony, J. L. Dufresne, and B. Stevens, 2014: The radiative impact of clouds on the shift of the intertropical convergence zone. Geophys. Res. Lett., 41, 43084315, https://doi.org/10.1002/2014GL060354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H.-H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 17081725, https://doi.org/10.1029/2018MS001313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H.-H., and S. Bordoni, 2020: Energetic constraints on the ITCZ position in the observed seasonal cycle from MERRA-2 reanalysis. Geophys. Res. Lett., 47, e2020GL088506, https://doi.org/10.1029/2020GL088506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao I. M. Held, and J. C. Golaz, 2017: Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophys. Res. Lett., 44, 15201527, https://doi.org/10.1002/2016GL071992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 27512768, https://doi.org/10.1007/s00382-014-2380-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 68
Full Text Views 78 78 52
PDF Downloads 86 86 49

Seasonal Sensitivity of the Cross-Equatorial Hadley Cell Response to Extratropical Thermal Forcings

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

This study explores the seasonal sensitivity of tropical circulation responses to an idealized extratropical thermal forcing using the Community Atmosphere Model version 5 coupled to a slab ocean. The thermal heating over the Southern Ocean is held constant, and the tropical responses in each month of the year are investigated. An anomalous cross-equatorial cell and a southward tropical rain belt shift occur every month. The anomalous cross-equatorial cell has a strong influence on the strengths of the Hadley cell and the subtropical jet in the winter hemisphere; in contrast, it has nearly no impact on the Hadley cell and the subtropical jet strengths in the summer hemisphere. The seasonal variation of the anomalous cross-equatorial cell is small (30% of the annual mean change), and could be understood via the energetic and the sea surface temperature gradient perspectives. Both perspectives point to the seasonality of the anomalous ocean heat uptake within the deep tropics as the key factor explaining the weak seasonality of the anomalous cross-equatorial cell. We propose a hypothesis explaining about 75% of this seasonal variation via the climatological position of the ITCZ relative to the anomalous cross-equatorial cell. The results suggest a modest seasonality in tropical precipitation and circulation responses to extratropical forcing. Also, such seasonality may be partly predicted by the climatological seasonal cycle of the tropical circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 14 April 2021 to include additional funding information in the Acknowledgments section.

Corresponding author: Yen-Ting Hwang, ythwang@ntu.edu.tw

Abstract

This study explores the seasonal sensitivity of tropical circulation responses to an idealized extratropical thermal forcing using the Community Atmosphere Model version 5 coupled to a slab ocean. The thermal heating over the Southern Ocean is held constant, and the tropical responses in each month of the year are investigated. An anomalous cross-equatorial cell and a southward tropical rain belt shift occur every month. The anomalous cross-equatorial cell has a strong influence on the strengths of the Hadley cell and the subtropical jet in the winter hemisphere; in contrast, it has nearly no impact on the Hadley cell and the subtropical jet strengths in the summer hemisphere. The seasonal variation of the anomalous cross-equatorial cell is small (30% of the annual mean change), and could be understood via the energetic and the sea surface temperature gradient perspectives. Both perspectives point to the seasonality of the anomalous ocean heat uptake within the deep tropics as the key factor explaining the weak seasonality of the anomalous cross-equatorial cell. We propose a hypothesis explaining about 75% of this seasonal variation via the climatological position of the ITCZ relative to the anomalous cross-equatorial cell. The results suggest a modest seasonality in tropical precipitation and circulation responses to extratropical forcing. Also, such seasonality may be partly predicted by the climatological seasonal cycle of the tropical circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 14 April 2021 to include additional funding information in the Acknowledgments section.

Corresponding author: Yen-Ting Hwang, ythwang@ntu.edu.tw
Save