Observed Extreme Air–Sea Heat Flux Variations during Three Tropical Cyclones in the Tropical Southeastern Indian Ocean

Xiangzhou Song Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China

Search for other papers by Xiangzhou Song in
Current site
Google Scholar
PubMed
Close
,
Chunlin Ning First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Chunlin Ning in
Current site
Google Scholar
PubMed
Close
,
Yongliang Duan First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yongliang Duan in
Current site
Google Scholar
PubMed
Close
,
Huiwu Wang First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Huiwu Wang in
Current site
Google Scholar
PubMed
Close
,
Chao Li First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Chao Li in
Current site
Google Scholar
PubMed
Close
,
Yang Yang First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
,
Jianjun Liu First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jianjun Liu in
Current site
Google Scholar
PubMed
Close
, and
Weidong Yu School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-Sen University), Ministry of Education, Zhuhai, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Weidong Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Six-month buoy-based heat flux observations from the poorly sampled tropical southeastern Indian Ocean are examined to document the extremes during three tropical cyclones (TCs) from December 2018 to May 2019. The most striking feature at the mooring site (16.9°S, 115.2°E) during the TCs is the extensively suppressed diurnal cycle of the net surface flux (Qnet), with a mean daytime (nighttime) reduction of 470 (131) W m−2, a peak decrease at approximately noon of 695 W m−2 and an extreme drop during TC Riley of 800 W m−2. The mean surface cooling in the daytime is primarily contributed by the 370 W m−2 decrease in shortwave radiation associated with the increased cloudiness. The air–sea turbulent heat fluxes increase by approximately 151 W m−2 in response to the enhanced wind speed under near-neutral boundary conditions. The daily mean rainfall-induced cooling is 8 W m−2, with a maximum magnitude of 90 W m−2. The mean values, seasonal variation, and synoptic variability of the characteristic heat fluxes are used to assess the new reanalysis data from ERA5 and MERRA2 and the analyzed OAFlux. The overall performance of the high-frequency net heat flux estimates at the synoptic scale is satisfactory, but the four flux components exhibit different quality levels. A serious error is that ERA5 and MERRA2 poorly represent TCs, and they show significant daily mean Qnet biases with opposite directions, −59 W m−2 (largely due to the overestimated latent heat with a bias of −76 W m−2) and 50 W m−2 (largely due to the overestimated shortwave radiation with a bias of 41 W m−2), respectively.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Weidong Yu, yuwd@mail.sysu.edu.cn

Abstract

Six-month buoy-based heat flux observations from the poorly sampled tropical southeastern Indian Ocean are examined to document the extremes during three tropical cyclones (TCs) from December 2018 to May 2019. The most striking feature at the mooring site (16.9°S, 115.2°E) during the TCs is the extensively suppressed diurnal cycle of the net surface flux (Qnet), with a mean daytime (nighttime) reduction of 470 (131) W m−2, a peak decrease at approximately noon of 695 W m−2 and an extreme drop during TC Riley of 800 W m−2. The mean surface cooling in the daytime is primarily contributed by the 370 W m−2 decrease in shortwave radiation associated with the increased cloudiness. The air–sea turbulent heat fluxes increase by approximately 151 W m−2 in response to the enhanced wind speed under near-neutral boundary conditions. The daily mean rainfall-induced cooling is 8 W m−2, with a maximum magnitude of 90 W m−2. The mean values, seasonal variation, and synoptic variability of the characteristic heat fluxes are used to assess the new reanalysis data from ERA5 and MERRA2 and the analyzed OAFlux. The overall performance of the high-frequency net heat flux estimates at the synoptic scale is satisfactory, but the four flux components exhibit different quality levels. A serious error is that ERA5 and MERRA2 poorly represent TCs, and they show significant daily mean Qnet biases with opposite directions, −59 W m−2 (largely due to the overestimated latent heat with a bias of −76 W m−2) and 50 W m−2 (largely due to the overestimated shortwave radiation with a bias of 41 W m−2), respectively.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Weidong Yu, yuwd@mail.sysu.edu.cn
Save
  • Anderson, S. P., A. Hinton, and R. A. Weller, 1998: Moored observations of precipitation temperature. J. Atmos. Oceanic Technol., 15, 979986, https://doi.org/10.1175/1520-0426(1998)015<0979:MOOPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Araligidad, N. M., and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35, L04815, https://doi.org/10.1029/2007GL032746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2020: A road map to IndOOS-2: Better observations of the rapidly warming Indian Ocean. Bull. Amer. Meteor. Soc., 101, E1891E1913, https://doi.org/10.1175/BAMS-D-19-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656, https://doi.org/10.1175/MWR3087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493, https://doi.org/10.1175/2011JCLI4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and Z. Zhou, 1997: Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 102, 27 81327 824, https://doi.org/10.1029/97JC02197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496499, https://doi.org/10.1126/science.267.5197.496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868886, https://doi.org/10.1175/2009JCLI3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chi, N.-H., R.-C. Lien, E. A. D’Asaro, and B. B. Ma, 2014: The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden–Julian oscillation events. J. Geophys. Res. Oceans, 119, 46384652, https://doi.org/10.1002/2014JC010192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air–sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and M. J. McPhaden, 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102, 85338553, https://doi.org/10.1029/97JC00020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere–ocean coupled processes in the Madden–Julian Oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, T. D., D. V. Manov, D. A. Siegel, and R. A. Weller, 1994: Determination of longwave heat flux at the air–sea interface using measurements from buoy platforms. J. Atmos. Oceanic Technol., 11, 10571078, https://doi.org/10.1175/1520-0426(1994)011<1057:DOLHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., V. Jampana, R. A. Weller, S. P. Bigorre, A. J. Plueddemann, and C. W. Fairall, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and Coauthors, 2020: Tracking air–sea exchange and upper-ocean variability in the Indonesian–Australian Basin during the onset of the 2018/19 Australian summer monsoon. Bull. Amer. Meteor. Soc., 101, E1397E1412, https://doi.org/10.1175/BAMS-D-19-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2005: Mixed layer heat balance on intraseasonal time scales in the northwestern tropical Atlantic Ocean. J. Climate, 18, 41684184, https://doi.org/10.1175/JCLI3531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., J. Vialard, B. P. Kumar, and M. J. McPhaden, 2010: Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J. Climate, 23, 947965, https://doi.org/10.1175/2009JCLI3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitag, H. P., C. Ning, P. Berk, D. Dougherty, R. Marshall, J. M. Strick, and D. Zimmerman, 2016: ATLAS, T-Flux, Bailong Meteorological sensor comparison test report. NOAA Tech. Memo. OAR PMEL-148, 31 pp., https://doi.org/10.7289/V57942PP.

    • Crossref
    • Export Citation
  • Fung, I. Y., D. E. Harrison, and A. A. Lacis, 1984: On the variability of the net longwave radiation at the ocean surface. Rev. Geophys., 22, 177193, https://doi.org/10.1029/RG022i002p00177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and B. C. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10, 27642781, https://doi.org/10.1175/1520-0442(1997)010<2764:UIGOSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorden, A. L., 2005: Oceanography of the Indonesian Seas. Oceanography, 18, 27642781, https://doi.org/10.5670/OCEANOG.2005.01.

  • Gosnell, R., C. W. Fairall, and P. J. Webster, 1995: The sensible heat of rainfall in the tropical ocean. J. Geophys. Res., 100, 18 43718 442, https://doi.org/10.1029/95JC01833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16, 32743295, https://doi.org/10.1175/1520-0442(2003)016<3274:IAAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden-Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10, 647661, https://doi.org/10.1175/1520-0442(1997)010<0647:IASIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://doi.org/10.21957/vf291hehd7.

    • Crossref
    • Export Citation
  • Houze, R. A., 2014: Clouds and precipitation in tropical cyclones. Cloud Dynamics, 2nd ed. Academic Press, 287–327.

    • Crossref
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364, https://doi.org/10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat flux in the Madden–Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9, 30863104, https://doi.org/10.1175/1520-0442(1996)009<3086:TROLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the northeast Atlantic. J. Climate, 14, 17801789, https://doi.org/10.1175/1520-0442(2001)014<1780:ACOENN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta, 1988: Air–sea interaction on the timescale of 30 to 50 days. J. Atmos. Sci., 45, 13041322, https://doi.org/10.1175/1520-0469(1988)045<1304:AIOTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda. J. Atmos. Sci., 24, 182186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air–sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1981: A short history of the operational PBL parameterization at ECMWF. Workshop on Planetary Boundary Layer Parameterization, 59–77, Shinfield Park, Reading, United Kingdom, ECMWF, https://www.ecmwf.int/en/elibrary/10845-short-history-pbl-parameterization-ecmwf.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009a: Ocean–atmosphere interactions during Cyclone Nargis. Eos, Trans. Amer. Geophys. Union, 90, 5354, https://doi.org/10.1029/2009EO070001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009b: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28, 401421, https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950, https://doi.org/10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and Y. Chao, 1996: Evolution dynamics of tropical ocean–atmosphere annual cycle variability. J. Climate, 9, 31873205, https://doi.org/10.1175/1520-0442(1996)009<3187:EDOTOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and F. P. J. Valero, 1995: Direct observations of excess solar absorption by clouds. Science, 267, 16261629, https://doi.org/10.1126/science.267.5204.1626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., B. Subasilar, G. J. Zhang, W. Conant, R. D. Cess, J. T. Kiehl, H. Grassl, and L. Shi, 1995: Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 267, 499503, https://doi.org/10.1126/science.267.5197.499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400, https://doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for seas surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA-NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, https://doi.org/10.1175/JAS-D-11-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley Dellaripa, E. M., and E. D. Maloney, 2015: Analysis of MJO wind-flux feedbacks in the Indian Ocean using RAMA buoy observations. J. Meteor. Soc. Japan, 93A, 120, https://doi.org/10.2151/jmsj.2015-021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze, 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, https://doi.org/10.1002/2014JD022948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2017: The diurnal cycle of tropical cloudiness and rainfall associated with the Madden–Julian oscillation. J. Climate, 30, 39994020, https://doi.org/10.1175/JCLI-D-16-0788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, https://doi.org/10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657, https://doi.org/10.1038/ngeo312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., 2020: The importance of relative wind speed in estimating air–sea turbulent heat fluxes in bulk formulas: Examples in the Bohai Sea. J. Atmos. Oceanic Technol., 37, 589603, https://doi.org/10.1175/JTECH-D-19-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and L. Yu, 2013: How much net surface heat flux should go into the western Pacific warm pool? J. Geophys. Res. Oceans, 118, 35693585, https://doi.org/10.1002/jgrc.20246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and L. Yu, 2017: Air–sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage. J. Geophys. Res. Oceans, 122, 40684087, https://doi.org/10.1002/2016JC012254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., L. Yu, and R. A. Weller, 2003: Comparisons of surface meteorology and turbulent heat fluxes over the Atlantic: MWP model analyses versus moored buoy observations. J. Climate, 16, 679695, https://doi.org/10.1175/1520-0442(2003)016<0679:COSMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., K. Drushka, H. Bellenger, M. Lengaigne, S. Pous, and J.-P. Duvel, 2013: Understanding Madden–Julian-induced sea surface temperature variations in the north western Australian basin. Climate Dyn., 41, 32033218, https://doi.org/10.1007/s00382-012-1541-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., R. Zhang, J. Huang, L. Zeng, and F. Huang, 2017: Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res. Atmos., 122, 50885104, https://doi.org/10.1002/2016JC012332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1989: Uncertainties in estimates of surface heat fluxes derived from marine reports over the tropical and subtropical oceans. Tellus, 41A, 357370, https://doi.org/10.1111/j.1600-0870.1989.TB00388.X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, https://doi.org/10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development and index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Withee, G. W., and A. Johnson, 1976: Buoy observations during Hurricane Eloise (September 19 to October 11, 1975). U.S. Department of Commerce NOAA/NSTL Station Data Rep., 21 pp.

  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2019: Global air–sea fluxes of heat, fresh water, and momentum: Energy budget closure and unanswered questions. Annu. Rev. Mar. Sci., 11, 227248, https://doi.org/10.1146/annurev-marine-010816-060704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004: Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J. Climate, 17, 20962118, https://doi.org/10.1175/1520-0442(2004)017<2096:MAVOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2006: Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J. Climate, 19, 61536169, https://doi.org/10.1175/JCLI3970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and Coauthors, 2013: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air–sea fluxes through collaborative activities. Report of the CLIVAR/GSOP/WHOI Workshop on Ocean Syntheses and Surface Flux, WCRP Informal/Series Rep. 13/2013, ICPO Informal Rep. 189/13, 43 pp., https://www.pmel.noaa.gov/people/cronin/articles/ICPO189_WHOI_fluxes_workshop.pdf.

  • Yuan, D., and Coauthors, 2018: Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. J. Phys. Oceanogr., 48, 18031813, https://doi.org/10.1175/JPO-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, G. J., and M. J. McPhaden, 1995: The relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8, 589605, https://doi.org/10.1175/1520-0442(1995)008<0589:TRBSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., X. Wang, and C. Wang, 2018: On the simulations of global oceanic latent heat flux in the CMIP5 multimodel ensemble. J. Climate, 31, 71117128, https://doi.org/10.1175/JCLI-D-17-0713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 451 0 0
Full Text Views 1121 325 26
PDF Downloads 974 248 10