Transient Climate Response to Arctic Sea Ice Loss with Two Ice-Constraining Methods

Amélie Simon Sorbonne Université/IRD/MNHN/CNRS, LOCEAN, Paris, France

Search for other papers by Amélie Simon in
Current site
Google Scholar
PubMed
Close
,
Guillaume Gastineau Sorbonne Université/IRD/MNHN/CNRS, LOCEAN, Paris, France

Search for other papers by Guillaume Gastineau in
Current site
Google Scholar
PubMed
Close
,
Claude Frankignoul Sorbonne Université/IRD/MNHN/CNRS, LOCEAN, Paris, France

Search for other papers by Claude Frankignoul in
Current site
Google Scholar
PubMed
Close
,
Clément Rousset Sorbonne Université/IRD/MNHN/CNRS, LOCEAN, Paris, France

Search for other papers by Clément Rousset in
Current site
Google Scholar
PubMed
Close
, and
Francis Codron Sorbonne Université/IRD/MNHN/CNRS, LOCEAN, Paris, France

Search for other papers by Francis Codron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of Arctic sea ice loss on the ocean and atmosphere is investigated focusing on a gradual reduction of Arctic sea ice by 20% of the annual mean, occurring within 30 years, starting from present-day conditions. Two ice-constraining methods are explored to melt Arctic sea ice in a coupled climate model, while keeping present-day conditions for external forcing. The first method uses a reduction of sea ice albedo, which modifies the incoming surface shortwave radiation. The second method uses a reduction of thermal conductivity, which changes the heat conduction flux inside ice. Reduced thermal conductivity inhibits oceanic cooling in winter and sea ice basal growth, reducing the seasonality of sea ice thickness. For similar Arctic sea ice area loss, decreasing the albedo induces larger Arctic warming than reducing the conductivity, especially in spring. Both ice-constraining methods produce similar climate impacts, but with smaller anomalies when reducing the conductivity. In the Arctic, the sea ice loss leads to an increase of the North Atlantic water inflow in the Barents Sea and eastern Arctic, while the salinity decreases and the gyre intensifies in the Beaufort Sea. In the North Atlantic, the subtropical gyre shifts southward and the Atlantic meridional overturning circulation weakens. A dipole of sea level pressure anomalies sets up in winter over northern Siberia and the North Atlantic, which resembles the negative phase of the North Atlantic Oscillation. In the tropics, the Atlantic intertropical convergence zone shifts southward as the South Atlantic Ocean warms. In addition, Walker circulation reorganizes and the southeastern Pacific Ocean cools.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0288.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr Amélie Simon, amelie.simon@locean-ipsl.upmc.fr

Abstract

The impact of Arctic sea ice loss on the ocean and atmosphere is investigated focusing on a gradual reduction of Arctic sea ice by 20% of the annual mean, occurring within 30 years, starting from present-day conditions. Two ice-constraining methods are explored to melt Arctic sea ice in a coupled climate model, while keeping present-day conditions for external forcing. The first method uses a reduction of sea ice albedo, which modifies the incoming surface shortwave radiation. The second method uses a reduction of thermal conductivity, which changes the heat conduction flux inside ice. Reduced thermal conductivity inhibits oceanic cooling in winter and sea ice basal growth, reducing the seasonality of sea ice thickness. For similar Arctic sea ice area loss, decreasing the albedo induces larger Arctic warming than reducing the conductivity, especially in spring. Both ice-constraining methods produce similar climate impacts, but with smaller anomalies when reducing the conductivity. In the Arctic, the sea ice loss leads to an increase of the North Atlantic water inflow in the Barents Sea and eastern Arctic, while the salinity decreases and the gyre intensifies in the Beaufort Sea. In the North Atlantic, the subtropical gyre shifts southward and the Atlantic meridional overturning circulation weakens. A dipole of sea level pressure anomalies sets up in winter over northern Siberia and the North Atlantic, which resembles the negative phase of the North Atlantic Oscillation. In the tropics, the Atlantic intertropical convergence zone shifts southward as the South Atlantic Ocean warms. In addition, Walker circulation reorganizes and the southeastern Pacific Ocean cools.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-20-0288.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr Amélie Simon, amelie.simon@locean-ipsl.upmc.fr

Supplementary Materials

    • Supplemental Materials (PDF 4.38 MB)
Save
  • Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents sea-ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumont, O., and L. Bopp, 2006: Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem. Cycles, 20, GB2017, https://doi.org/10.1029/2005GB002591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, B. I., Y. D. Lenn, and C. Lique, 2018: Observed Atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice. J. Phys. Oceanogr., 48, 18491866, https://doi.org/10.1175/JPO-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17, 36233632, https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2016: The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J. Climate, 29, 401417, https://doi.org/10.1175/JCLI-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Climate, 30, 21632185, https://doi.org/10.1175/JCLI-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2019: Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett., 46, 22132221, https://doi.org/10.1029/2018GL081469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea-ice in a GCM ensemble and observations. J. Climate, 24, 231250, https://doi.org/10.1175/2010JCLI3775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, 2012: State of the climate in 2011. Bull. Amer. Meteor. Soc., 93 (7), S1S282, https://doi.org/10.1175/2012BAMSStateoftheClimate.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. J. Cassano, M. E. Higgins, and M. C. Serreze, 2014: Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model. Int. J. Climatol., 34, 766779, https://doi.org/10.1002/joc.3723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., and C. Cassou, 2013: Opposite CMIP3/CMIP5 trends in the wintertime northern annular mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett., 40, 36823687, https://doi.org/10.1002/grl.50643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 4 December 2017, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Crossref
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., and J. C. Chiang, 2013: Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate Dyn., 40, 14351452, https://doi.org/10.1007/s00382-012-1482-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., K. Caldeira, and D. G. MacMartin, 2015: Impacts of ocean albedo alteration on Arctic sea-ice restoration and Northern Hemisphere climate. Environ. Res. Lett., 10, 044020, https://doi.org/10.1088/1748-9326/10/4/044020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., B. D. Santer, C. Bonfils, D. D. Lucas, J. C. Chiang, and S. Zimmerman, 2017: Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall. Nat. Commun., 8, 1947, https://doi.org/10.1038/s41467-017-01907-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010a: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010b: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, https://doi.org/10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, https://doi.org/10.1002/2016GL067792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, https://doi.org/10.1175/JCLI-D-12-00490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. Polvani, and L. Sun, 2018: Contrasting the Antarctic and Arctic atmospheric responses to projected sea ice loss in the late twenty-first century. J. Climate, 31, 63536370, https://doi.org/10.1175/JCLI-D-17-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. Polvani, L. Sun, and C. Deser, 2020: Tropical climate responses to projected Arctic and Antarctic sea ice loss. Nat. Geosci., 13, 275281, https://doi.org/10.1038/s41561-020-0546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, https://doi.org/10.1029/97JC00480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. M. Maqueda, 1999: Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251268, https://doi.org/10.1007/s003820050280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 51955216, https://doi.org/10.1175/JCLI-D-14-00472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., A. R. Friedman, M. Khodri, and J. Vialard, 2019: Global ocean heat content redistribution during the 1998–2012 interdecadal Pacific oscillation negative phase. Climate Dyn., 53, 11871208, https://doi.org/10.1007/s00382-018-4387-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germe, A., F. Sévellec, J. Mignot, A. Fedorov, S. Nguyen, and D. Swingedouw, 2018: The impacts of oceanic deep temperature perturbations in the North Atlantic on decadal climate variability and predictability. Climate Dyn., 51, 23412357, https://doi.org/10.1007/s00382-017-4016-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, K. A., S. W. Laxon, A. L. Ridout, D. J. Wingham, and S. Bacon, 2012: Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci., 5, 194197, https://doi.org/10.1038/ngeo1379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. Thompson, and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97, 14121417, https://doi.org/10.1073/pnas.97.4.1412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dyn., 40, 21672192, https://doi.org/10.1007/s00382-012-1411-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2018: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte, et al., Eds., https://tools.niehs.nih.gov/cchhl/index.cfm?do=main.detail&reference_id=17191.

  • Kageyama, M., and Coauthors, 2013: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study. Climate Past, 9, 935953, https://doi.org/10.5194/cp-9-935-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, https://doi.org/10.1038/nature06921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 11851195, https://doi.org/10.1007/s00382-015-2639-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, GB1015, https://doi.org/10.1029/2003GB002199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Climate, 19, 46314637, https://doi.org/10.1175/JCLI3876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S. P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lind, S., R. B. Ingvaldsen, and T. Furevik, 2018: Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Climate Change, 8, 634639, https://doi.org/10.1038/s41558-018-0205-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lique, C., H. L. Johnson, and Y. Plancherel, 2018: Emergence of deep convection in the Arctic Ocean under a warming climate. Climate Dyn., 50, 38333847, https://doi.org/10.1007/s00382-017-3849-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and A. V. Fedorov, 2019: Global impacts of Arctic sea-ice loss mediated by the Atlantic meridional overturning circulation. Geophys. Res. Lett., 46, 944952, https://doi.org/10.1029/2018GL080602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2016: NEMO ocean engine. Note du Pôle de modélisation 27, Institut Pierre-Simon Laplace (IPSL), https://www.nemo-ocean.eu/doc/.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876, https://doi.org/10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., I. Polo, B. Rodríguez-Fonseca, T. Losada, and A. Lazar, 2018: Is there evidence of changes in tropical Atlantic variability modes under AMO phases in the observational record? J. Climate, 31, 515536, https://doi.org/10.1175/JCLI-D-16-0459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowski, W., J. Clement Kinney, M. Higgins, and A. Roberts, 2012: The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci., 40, 625654, https://doi.org/10.1146/annurev-earth-042711-105345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., P. J. Kushner, J. C. Fyfe, M. Sigmond, V. V. Kharin, and C. M. Bitz, 2017: Remarkable separability of circulation response to Arctic sea-ice loss and greenhouse gas forcing. Geophys. Res. Lett., 44, 79557964, https://doi.org/10.1002/2017GL074327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M., and Coauthors, 2019: Polar regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds, IPCC, 203320.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Ganopolski, and A. Levermann, 2007: Atlantic subsurface temperatures: Response to a shutdown of the overturning circulation and consequences for its recovery. J. Climate, 20, 48844898, https://doi.org/10.1175/JCLI4280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P. A., T. Oudar, and E. Sanchez-Gomez, 2019: Respective impacts of Arctic sea-ice decline and increasing greenhouse gases concentration on Sahel precipitation. Climate Dyn., 52, 59475964, https://doi.org/10.1007/s00382-018-4488-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and Coauthors, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749.

  • Oudar, T., E. Sanchez-Gomez, F. Chauvin, J. Cattiaux, L. Terray, and C. Cassou, 2017: Respective roles of direct GHG radiative forcing and induced Arctic sea-ice loss on the Northern Hemisphere atmospheric circulation. Climate Dyn., 49, 36933713, https://doi.org/10.1007/s00382-017-3541-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2013: When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett., 40, 20972101, https://doi.org/10.1002/grl.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285291, https://doi.org/10.1126/science.aai8204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A., R. Lindsay, J. Zhang, M. Steele, and H. Stern, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: Increasing fall–winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937943, https://doi.org/10.1007/s00382-008-0463-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sepulchre, P., and Coauthors, 2020: IPSL-CM5A2—An Earth system model designed for multi-millennial climate simulations. Geosci. Model Dev., 13, 30113053, https://doi.org/10.5194/gmd-13-3011-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, https://doi.org/10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Climate Change, 7, 604610, https://doi.org/10.1038/nclimate3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, A., C. Frankignoul, G. Gastineau, and Y. O. Kwon, 2020: An observational estimate of the direct response of the cold-season atmospheric circulation to the Arctic sea ice loss. J. Climate, 33, 38633882, https://doi.org/10.1175/JCLI-D-19-0687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125, https://doi.org/10.1175/JCLI3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Climate, 30, 45474565, https://doi.org/10.1175/JCLI-D-16-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., G. J. van Oldenborgh, W. Hazeleger, and G. Burgers, 2007: On the robustness of ENSO teleconnections. Climate Dyn., 29, 469485, https://doi.org/10.1007/s00382-007-0251-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Strey, S. T., W. L. Chapman, and J. E. Walsh, 2010: The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. J. Geophys. Res., 115, D23103, https://doi.org/10.1029/2009JD013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, R. A. Tomas, and M. Alexander, 2020: Global coupled climate response to polar sea ice loss: Evaluating the effectiveness of different ice-constraining approaches. Geophys. Res. Lett., 47, e2019GL085788, https://doi.org/10.1029/2019GL085788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suo, L., Y. Gao, D. Guo, and I. Bethke, 2017: Sea-ice free Arctic contributes to the projected warming minimum in the North Atlantic. Environ. Res. Lett., 12, 074004, https://doi.org/10.1088/1748-9326/aa6a5e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villamayor, J., T. Ambrizzi, and E. Mohino, 2018: Influence of decadal sea surface temperature variability on northern Brazil rainfall in CMIP5 simulations. Climate Dyn., 51, 563579, https://doi.org/10.1007/s00382-017-3941-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., C. Deser, L. Sun, and R. A. Tomas, 2018: Fast response of the tropics to an abrupt loss of Arctic sea ice via ocean dynamics. Geophys. Res. Lett., 45, 42644272, https://doi.org/10.1029/2018GL077325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wassmann, P., and Coauthors, 2015: The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr., 139, 4265, https://doi.org/10.1016/j.pocean.2015.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., A. Abe-Ouchi, H. Tatebe, T. Nozawa, and A. Oka, 2018: The importance of ocean dynamical feedback for understanding the impact of mid–high-latitude warming on tropical precipitation change. J. Climate, 31, 24172434, https://doi.org/10.1175/JCLI-D-17-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Clement, and P. Di Nezio, 2014: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, https://doi.org/10.1175/JCLI-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: The Beaufort Gyre intensification and stabilization: A model–observation synthesis. J. Geophys. Res. Oceans, 121, 79337952, https://doi.org/10.1002/2016JC012196.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1383 0 0
Full Text Views 981 300 32
PDF Downloads 671 148 8