• Boer, G. J., 2011: The ratio of land to ocean temperature change under global warming. Climate Dyn., 37, 22532270, https://doi.org/10.1007/s00382-011-1112-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 78347851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmos. Oceanic Sci. Lett., 12, 238245, https://doi.org/10.1080/16742834.2019.1611170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, L. Song, and W. Chen, 2019: Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Climate Dyn., 53, 18051821, https://doi.org/10.1007/s00382-019-04738-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, W. Chen, S. Yao, and B. Yu, 2020: Coherent interannual variations of springtime surface temperature and temperature extremes between central-northern Europe and Northeast Asia. J. Geophys. Res. Atmos., 125, e2019JD032226, https://doi.org/10.1029/2019JD032226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and et al. , 2016: Variation in summer surface air temperature over northeast Asia and its associated circulation anomalies. Adv. Atmos. Sci., 33, 19, https://doi.org/10.1007/s00376-015-5056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, A. Lin, and Z. Wang, 2018: An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophys. Res. Lett., 45, 11 36111 369, https://doi.org/10.1029/2018GL079836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., H. Endo, Y. Harada, and W. Ohfuchi, 2009: Relationship between high-impact weather events in Japan and propagation of Rossby waves along the Asian jet in July 2004. J. Meteor. Soc. Japan, 87, 139156, https://doi.org/10.2151/jmsj.87.139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Inesen, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Sun, and X. Yang, 2013: Impact of variability in the Indian summer monsoon on the East Asian summer monsoon. Atmos. Sci. Lett., 14, 1419, https://doi.org/10.1002/asl2.408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., and R. Lu, 2016: The meridional displacement of the summer Asian jet, Silk Road pattern, and tropical SST anomalies. J. Climate, 29, 37533766, https://doi.org/10.1175/JCLI-D-15-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., R. Lu, and S. Li, 2017: Amplified summer warming in Europe–West Asia and Northeast Asia after the mid-1990s. Environ. Res. Lett., 12, 094007, https://doi.org/10.1088/1748-9326/aa7909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, X., S. Xue, R. Lu, and Y. Liu, 2018: Comparison between the interannual and decadal components of the Silk Road pattern. Atmos. Oceanic Sci. Lett., 11, 270274, https://doi.org/10.1080/16742834.2018.1439661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2006: Interannual change in summertime precipitation over northeast Asia. Geophys. Res. Lett., 33, L16703, https://doi.org/10.1029/2006GL027119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between Northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, https://doi.org/10.1175/2007JCLI1949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., and Z. Guan, 2017: Summer rainfall seesaw between Hetao and the middle and lower reaches of the Yangtze River and its relationship with the North Atlantic Oscillation. J. Climate, 30, 66296643, https://doi.org/10.1175/JCLI-D-16-0760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., B.-K. Moon, M.-K. Kim, and M. Kwon, 2020: Dynamic mechanisms of summer Korean heat waves simulated in a long-term unforced Community Climate System Model version 3. Atmos. Sci. Lett., 21, e973, https://doi.org/10.1002/asl.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and C. Ruan, 2018: The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett., 13, 024007, https://doi.org/10.1088/1748-9326/aa9d33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China. J. Climate, 30, 83578374, https://doi.org/10.1175/JCLI-D-16-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and R. Lu, 2018: Subseasonal change in the seesaw pattern of precipitation between the Yangtze River basin and the tropical western North Pacific during summer. Adv. Atmos. Sci., 35, 12311242, https://doi.org/10.1007/s00376-018-7304-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., R. Lu, R. J. Greatbatch, G. Li, and X. Hong, 2020: Maintenance mechanism for the teleconnection pattern over the high latitudes of the Eurasian continent in summer. J. Climate, 33, 10171030, https://doi.org/10.1175/JCLI-D-19-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., 2014: Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall. Adv. Atmos. Sci., 31, 13661376, https://doi.org/10.1007/s00376-014-3171-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., R. Lu, and R. Wu, 2017: Weakened impact of the Indian early summer monsoon on North China rainfall around the late 1970s: Role of basic-state change. J. Climate, 30, 79918005, https://doi.org/10.1175/JCLI-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., J. H. Oh, and B. J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., L. B. Thomas, F. C. Robert, and J. M. Fanthune, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-J., and J.-B. Ahn, 2016: Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature. Climate Dyn., 46, 32053221, https://doi.org/10.1007/s00382-015-2763-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saeed, S., N. V. Lipzig, W. A. Müller, F. Saeed, and D. Zanchettin, 2014: Influence of the circumglobal wave-train on European summer precipitation. Climate Dyn., 43, 503515, https://doi.org/10.1007/s00382-013-1871-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Climate, 19, 15311544, https://doi.org/10.1175/JCLI3697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and et al. , 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis System. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and L. Wang, 2013: Two modes of the Silk Road pattern and their interannual variability simulated by LASG/IAP AGCM SAMIL2.0. Adv. Atmos. Sci., 30, 908921, https://doi.org/10.1007/s00376-012-2145-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, V., N. J. Dunstone, A. A. Scaife, D. M. Smith, S. C. Hardlman, H.-L. Ren, B. Lu, and S. E. Belcher, 2019: Risk and dynamics of unprecedented hot months in South East China. Climate Dyn., 52, 25852596, https://doi.org/10.1007/s00382-018-4281-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 15771588, https://doi.org/10.2151/jmsj.82.1577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2015: The north China/northeastern Asia severe summer drought in 2004. J. Climate, 28, 66676681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1992: Effects of blocking anticyclones in Eurasia in the rainy season (meiyu/baiu season). J. Meteor. Soc. Japan, 70, 929951, https://doi.org/10.2151/jmsj1965.70.5_929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and Y. Jiao, 2017: The impacts of the Indian summer rainfall on North China summer rainfall. Asia-Pac. J. Atmos. Sci., 53, 195206, https://doi.org/10.1007/s13143-017-0013-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulff, C. O., R. J. Greatbatch, D. I. V. Domeisen, G. Gollan, and F. Hansen, 2017: Tropical forcing of the summer East Atlantic pattern. Geophys. Res. Lett., 44, 11 16611 173, https://doi.org/10.1002/2017GL075493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Y. Kosaka, 2016: Interannual variability and predictability of summer climate over the northwest Pacific and East Asia. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, 333–342.

    • Crossref
    • Export Citation
  • Xie, S.-P., and et al. , 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, J. Mao, and R. Chen, 2019: Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmos. Oceanic Sci. Lett., 12, 231237, https://doi.org/10.1080/16742834.2019.1617626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019: The British–Baikal corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, Y. Liu, W. Chen, and P. Huang, 2020a: The record-breaking heat wave of June 2019 in central Europe. Atmos. Sci. Lett., 21, e964, https://doi.org/10.1002/asl.964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, G. Chen, and I.-S. Kang, 2020b: Intraseasonal variations of the British–Baikal Corridor pattern. J. Climate, 33, 21832200, https://doi.org/10.1175/JCLI-D-19-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 20932114, https://doi.org/10.1175/2009JCLI3323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 122 122 42
Full Text Views 42 42 22
PDF Downloads 53 53 32

Combined Effects of the British–Baikal Corridor Pattern and the Silk Road Pattern on Eurasian Surface Air Temperatures in Summer

View More View Less
  • 1 College of Oceanography, Hohai University, Nanjing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China
  • | 4 Division of Earth Environmental System, Pusan National University, Busan, South Korea
© Get Permissions
Restricted access

Abstract

The summer British–Baikal Corridor pattern (BBC) and the Silk Road pattern (SRP) manifest as zonally oriented teleconnections in the high and middle latitudes, respectively, of the Eurasian continent. In this study, we investigate the combined effects of the BBC and SRP on surface air temperatures over the Eurasian continent. It is found that the combination of the BBC and SRP results in two kinds of well-organized, large-scale circulation anomalies: the zonal tripole pattern and the Ω-like pattern in the 200-hPa geopotential height anomalies. The zonal tripole pattern is characterized by opposite variations between western Siberia/western Asia and Europe/central Asia/central Siberia, and the Ω-like pattern manifests as consistent variations over midlatitude Europe, western Siberia, and central Asia. Correspondingly, the resultant large-scale surface air temperature anomalies feature the same zonal tripole pattern and Ω-like pattern, respectively. Further results indicate that these two patterns resemble the two leading modes of surface air temperature anomalies over the middle to high latitudes of Eurasia. This study indicates that the temperature variations in the middle and high latitudes of Eurasia can be coordinated and evidently explained by the combination of the BBC and SRP, and it contributes to a more comprehensive understanding of the large-scale Eurasian climate variability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinyu Li, lixinyu@hhu.edu.cn

Abstract

The summer British–Baikal Corridor pattern (BBC) and the Silk Road pattern (SRP) manifest as zonally oriented teleconnections in the high and middle latitudes, respectively, of the Eurasian continent. In this study, we investigate the combined effects of the BBC and SRP on surface air temperatures over the Eurasian continent. It is found that the combination of the BBC and SRP results in two kinds of well-organized, large-scale circulation anomalies: the zonal tripole pattern and the Ω-like pattern in the 200-hPa geopotential height anomalies. The zonal tripole pattern is characterized by opposite variations between western Siberia/western Asia and Europe/central Asia/central Siberia, and the Ω-like pattern manifests as consistent variations over midlatitude Europe, western Siberia, and central Asia. Correspondingly, the resultant large-scale surface air temperature anomalies feature the same zonal tripole pattern and Ω-like pattern, respectively. Further results indicate that these two patterns resemble the two leading modes of surface air temperature anomalies over the middle to high latitudes of Eurasia. This study indicates that the temperature variations in the middle and high latitudes of Eurasia can be coordinated and evidently explained by the combination of the BBC and SRP, and it contributes to a more comprehensive understanding of the large-scale Eurasian climate variability.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinyu Li, lixinyu@hhu.edu.cn
Save