What Modulates the Intensity of Synoptic-Scale Variability over the Western North Pacific during Boreal Summer and Fall?

Renguang Wu School of Earth Sciences, Zhejiang University, Hangzhou, China
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Yuqi Wang Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuqi Wang in
Current site
Google Scholar
PubMed
Close
, and
Xi Cao Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xi Cao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigates the factors that affect the year-to-year change in the intensity of synoptic-scale variability (SSV) over the tropical western North Pacific (TWNP) during boreal summer and fall. It is found that the intensity of the TWNP SSV in summer is associated with the equatorial central-eastern Pacific sea surface temperature (SST) anomalies that modulate the background fields through a Rossby wave response both in the source region and along the propagation path of the synoptic-scale disturbances. In fall, the intensity of the TWNP SSV is related to an SST anomaly pattern with opposite anomalies in the equatorial central Pacific and TWNP that modulates the background fields from the equatorial central Pacific to TWNP. However, the equatorial central Pacific SST anomalies alone fail to change the intensity of the TWNP SSV as the induced background field changes are limited to the equatorial central Pacific. It is shown that tropical western Pacific SST anomalies may induce notable changes in the intensity of the TWNP SSV. The relation of the TWNP SSV to the equatorial eastern Pacific SST is weak due to opposite SST anomalies in different types of years. Both seasonal mean and intraseasonal flows provide sources of barotropic energy for the change in the intensity of the TWNP synoptic-scale disturbances in summer. Seasonal mean flow has a main contribution to the barotropic energy conversion for the change in the intensity of the TWNP synoptic-scale disturbances in fall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn

Abstract

The present study investigates the factors that affect the year-to-year change in the intensity of synoptic-scale variability (SSV) over the tropical western North Pacific (TWNP) during boreal summer and fall. It is found that the intensity of the TWNP SSV in summer is associated with the equatorial central-eastern Pacific sea surface temperature (SST) anomalies that modulate the background fields through a Rossby wave response both in the source region and along the propagation path of the synoptic-scale disturbances. In fall, the intensity of the TWNP SSV is related to an SST anomaly pattern with opposite anomalies in the equatorial central Pacific and TWNP that modulates the background fields from the equatorial central Pacific to TWNP. However, the equatorial central Pacific SST anomalies alone fail to change the intensity of the TWNP SSV as the induced background field changes are limited to the equatorial central Pacific. It is shown that tropical western Pacific SST anomalies may induce notable changes in the intensity of the TWNP SSV. The relation of the TWNP SSV to the equatorial eastern Pacific SST is weak due to opposite SST anomalies in different types of years. Both seasonal mean and intraseasonal flows provide sources of barotropic energy for the change in the intensity of the TWNP synoptic-scale disturbances in summer. Seasonal mean flow has a main contribution to the barotropic energy conversion for the change in the intensity of the TWNP synoptic-scale disturbances in fall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn
Save
  • Cao, X., and R. Wu, 2018: Comparison of different time scale contributions to tropical cyclone genesis over the western North Pacific in 2015 and 2016. J. Meteor. Soc. Japan, 96, 317336, https://doi.org/10.2151/jmsj.2018-038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., P. Huang, G.-H. Chen, and W. Chen, 2012: Modulation of western North Pacific tropical cyclone genesis by intraseasonal oscillation of the ITCZ: A statistical analysis. Adv. Atmos. Sci., 29, 744754, https://doi.org/10.1007/s00376-012-1121-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., R. Wu, and M.-Y. Bi, 2018: Contributions of different time scale variations to tropical cyclogenesis over the western North Pacific. J. Climate, 31, 31373153, https://doi.org/10.1175/JCLI-D-17-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R.-H. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, https://doi.org/10.1175/2008JCLI2221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. Chou, 2014: Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific. Mon. Wea. Rev., 142, 7993, https://doi.org/10.1175/MWR-D-13-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and S.-P. Weng, 1998: Interannual variation of the summer synoptic-scale disturbance activity in the western tropical Pacific. Mon. Wea. Rev., 126, 17251733, https://doi.org/10.1175/1520-0493(1998)126<1725:IVOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., J.-D. Tsay, M.-C. Yen, and J. Matsumoto, 2012: Interannual variation of the late fall rainfall in central Vietnam. J. Climate, 25, 392413, https://doi.org/10.1175/JCLI-D-11-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B., T. Li, M. S. Peng, and F.-Z. Weng, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763780, https://doi.org/10.1175/WAF1013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., C. Kodama, Y. Yamada, A. T. Noda, and M. Satoh, 2016: Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model. Theor. Appl. Climatol., 124, 737755, https://doi.org/10.1007/s00704-015-1456-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 5779, https://doi.org/10.1007/BF01022521.

  • Hsu, P.-C., C.-H. Tsou, H.-H. Hsu, and J.-H. Chen, 2009: Eddy energy along the tropical storm track in association with ENSO. J. Meteor. Soc. Japan, 87, 687704, https://doi.org/10.2151/jmsj.87.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927941, https://doi.org/10.1175/2010JCLI3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low-pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., 2019: Special issue: ENSO diversity. Climate Dyn., 52, 7133, https://doi.org/10.1007/s00382-019-04723-2.

  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C.-Y., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878, https://doi.org/10.1175/JCLI-D-11-00430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C.-Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the western North Pacific. J. Climate, 27, 140154, https://doi.org/10.1175/JCLI-D-13-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origins of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, https://doi.org/10.1175/JAS3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and N. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2013: What percentage of western North Pacific tropical cyclones form within the monsoon trough? Mon. Wea. Rev., 141, 499505, https://doi.org/10.1175/MWR-D-12-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127, https://doi.org/10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effects of ENSO and the MJO on the western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945960, https://doi.org/10.1175/1520-0493(2003)131<0945:IBTBSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., H.-H. Hsu, and P.-C. Hsu, 2014: The role of multiscale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn. J. Climate, 27, 37503766, https://doi.org/10.1175/JCLI-D-13-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-Q., R. Wu, and Y. Jiao, 2020: Upscale feedback of high-frequency winds on seasonal SST change over the tropical western North Pacific during boreal summer. Climate Dyn., 55, 24392451, https://doi.org/10.1007/s00382-020-05391-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z.-P. Wen, R.-H. Huang, and R. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140150, https://doi.org/10.1175/MWR-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z.-P. Wen, T. Li, and R. Huang, 2014: ENSO-phase dependent TD and MRG wave activity in the western North Pacific. Climate Dyn., 42, 12171227, https://doi.org/10.1007/s00382-013-1754-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z.-P. Wen, and R. Wu, 2015a: Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific. Part I: Observations. J. Climate, 28, 71087127, https://doi.org/10.1175/JCLI-D-14-00806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Wen, and R. Wu, 2015b: Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific. Part II: Energetics and numerical experiments. J. Climate, 28, 93329349, https://doi.org/10.1175/JCLI-D-14-00807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zhang, J.-M. Chen, and T. Feng, 2018: Impact of two types of El Niño on tropical cyclones over the western North Pacific: Sensitivity to location and intensity of Pacific warming. J. Climate, 31, 17251742, https://doi.org/10.1175/JCLI-D-17-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., Y. Fukutomi, and J. Matsumoto, 2011: An observational study of the extremely heavy rain event in northern Vietnam during 30 October–1 November 2008. J. Meteor. Soc. Japan, 89A, 331344, https://doi.org/10.2151/jmsj.2011-A23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2000: Interannual variability of summer monsoon onset over the western North Pacific and the underlying processes. J. Climate, 13, 24832501, https://doi.org/10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 12211242, https://doi.org/10.1007/s00382-017-3675-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, Z.-P. Wen, G. Huang, and K. Hu, 2012: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol., 108, 119133, https://doi.org/10.1007/s00704-011-0519-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Huang, Z. Du, and K. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, https://doi.org/10.1007/s00382-013-1820-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Y.-Y. Yang, and X. Cao, 2019: Respective and combined impacts of regional SST anomalies on tropical cyclogenesis in different sectors of the western North Pacific. J. Geophys. Res. Atmos., 124, 89178934, https://doi.org/10.1029/2019JD030736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Y. Wang, and Y. Jiao, 2020a: High frequency wind-related seasonal mean latent heat flux changes. Climate Dyn., 55, 32693287, https://doi.org/10.1007/s00382-020-05445-6..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Y. Jiao, Y. Wang, and X.-J. Jia, 2020b: High-frequency wind-related seasonal mean latent heat flux changes over the tropical Indo-western Pacific in El Niño and La Niña years. J. Geophys. Res. Atmos., 125, e2020JD032954, https://doi.org/10.1029/2020JD032954..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K.-M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y.-Y., R. Wu, and C.-H. Wang, 2020: Individual and combined impacts of tropical Indo-Pacific SST anomalies on interannual variation of the Indochina peninsular precipitation. J. Climate, 33, 10691088, https://doi.org/10.1175/JCLI-D-19-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2015a: Modulation of northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93, 8197, https://doi.org/10.2151/jmsj.2015-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., R. Yoshida, and G. B. Raga, 2015b: Impact of the Madden–Julian Oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns. J. Appl. Meteor. Climatol., 54, 14131429, https://doi.org/10.1175/JAMC-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2016: Boreal summer synoptic-scale waves over the western North Pacific in multimodel simulations. J. Climate, 29, 44874508, https://doi.org/10.1175/JCLI-D-15-0696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X.-Y., R.-Y. Lu, G.-H. Chen, and L. Wu, 2018: Interannual variations in synoptic-scale disturbances over the western North Pacific. Adv. Atmos. Sci., 35, 507517, https://doi.org/10.1007/s00376-017-7143-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 0 0
Full Text Views 412 124 9
PDF Downloads 385 82 4