Interdecadal Variation of the Wintertime Precipitation in Southeast Asia and Its Possible Causes

Zizhen Dong Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Zizhen Dong in
Current site
Google Scholar
PubMed
Close
,
Lin Wang Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
,
Peiqiang Xu Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Peiqiang Xu in
Current site
Google Scholar
PubMed
Close
,
Sittichai Pimonsree Atmospheric Pollution and Climate Change Research Unit, School of Energy and Environment, University of Phayao, Phayao, Thailand

Search for other papers by Sittichai Pimonsree in
Current site
Google Scholar
PubMed
Close
,
Atsamon Limsakul Environmental Research and Training Center, Technopolis, Pathumthani, Thailand

Search for other papers by Atsamon Limsakul in
Current site
Google Scholar
PubMed
Close
, and
Patama Singhruck Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Search for other papers by Patama Singhruck in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on several observational and reanalysis datasets for the winters 1901–2017, this study investigates the interdecadal (ID) variation of the Southeast Asian rainfall (SEAR) and its potential drivers. The dominant mode of the wintertime SEAR on the ID time scale features enhanced precipitation over the eastern Maritime Continent and the Philippines and a slight decrease of precipitation over the western Maritime Continent, or the opposite sign. The ID SEAR variability peaks at the 8–16-yr period and explains more than 20% of the total variance regardless of the datasets and period considered, highlighting the importance of the ID variability of the SEAR. The atmospheric circulation that facilitates abundant ID SEAR is characterized by enhanced lower-tropospheric wind convergence and cyclonic anomalies over the South China Sea and the Philippines. On the one hand, this wind convergence is attributed to the enhanced Walker circulation induced by the negative phase of the interdecadal Pacific oscillation (IPO). On the other hand, it is attributed to the enhanced northerly anomalies along the coast of East Asia induced by a strong East Asian winter monsoon (EAWM) and reduced autumn Arctic sea ice in the Barents–Kara Seas. These mechanisms are further confirmed by model experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The effects of the IPO, EAWM, and Arctic sea ice on the SEAR are mostly independent. They together explain approximately 70% of the SEAR variance on the ID time scale.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn

Abstract

Based on several observational and reanalysis datasets for the winters 1901–2017, this study investigates the interdecadal (ID) variation of the Southeast Asian rainfall (SEAR) and its potential drivers. The dominant mode of the wintertime SEAR on the ID time scale features enhanced precipitation over the eastern Maritime Continent and the Philippines and a slight decrease of precipitation over the western Maritime Continent, or the opposite sign. The ID SEAR variability peaks at the 8–16-yr period and explains more than 20% of the total variance regardless of the datasets and period considered, highlighting the importance of the ID variability of the SEAR. The atmospheric circulation that facilitates abundant ID SEAR is characterized by enhanced lower-tropospheric wind convergence and cyclonic anomalies over the South China Sea and the Philippines. On the one hand, this wind convergence is attributed to the enhanced Walker circulation induced by the negative phase of the interdecadal Pacific oscillation (IPO). On the other hand, it is attributed to the enhanced northerly anomalies along the coast of East Asia induced by a strong East Asian winter monsoon (EAWM) and reduced autumn Arctic sea ice in the Barents–Kara Seas. These mechanisms are further confirmed by model experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The effects of the IPO, EAWM, and Arctic sea ice on the SEAR are mostly independent. They together explain approximately 70% of the SEAR variance on the ID time scale.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aldrian, E., and R. D. Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 14351452, https://doi.org/10.1002/joc.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, R. K., S. T. Jackson, V. A. Sousa, M. E. Sullivan, T. A. Minckley, and M. J. Clifford, 2012: Multi-decadal drought and amplified moisture variability drove rapid forest community change in a humid region. Ecology, 93, 219226, https://doi.org/10.1890/11-1068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, B. M., K. Palakit, K. Duangsathaporn, P. Sanguantham, and P. Prasomsin, 2007: Decadal scale droughts over northwestern Thailand over the past 448 years: Links to the tropical Pacific and Indian Ocean sectors. Climate Dyn., 29, 6371, https://doi.org/10.1007/s00382-007-0225-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., and M. M. Lu, 2012: Intraseasonal predictability of Siberian high and East Asian winter monsoon and its interdecadal variability. J. Climate, 25, 17731778, https://doi.org/10.1175/JCLI-D-11-00500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. H. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665672, https://doi.org/10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., P. A. Harr, and H. J. Chen, 2005a: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. McBride, and C. H. Liu, 2005b: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, https://doi.org/10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheang, B.-K., 1987: Short- and long-range monsoon prediction in Southeast Asia. Monsoons, J. S. Fein and P. L. Stephens, Eds., John Wiley & Sons, 579–606.

  • Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and T. Li, 2007: Modulation of Northern Hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the quasi-biennial oscillation. J. Geophys. Res., 112, D20120, https://doi.org/10.1029/2007JD008611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., S. Yang, and R. H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, https://doi.org/10.1029/2004JD005669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. G. Wu, and W. Chen, 2014: Impacts of autumn Arctic sea ice concentration changes on the East Asian winter monsoon variability. J. Climate, 27, 54335450, https://doi.org/10.1175/JCLI-D-13-00731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, https://doi.org/10.1007/s00382-012-1446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693713, https://doi.org/10.1007/s13351-014-4046-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faikrua, A., S. Pimonsree, L. Wang, A. Limsakul, P. Singhruck, and Z. Dong, 2020: Decadal increase of the summer precipitation in Thailand after the mid-1990s. Climate Dyn., 55, 32533267, https://doi.org/10.1007/s00382-020-05443-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fauzi, R. R., and R. Hidayat, 2018: Role of cold surge and MJO on rainfall enhancement over Indonesia during East Asian winter monsoon. IOP Conf. Ser. Earth Environ. Sci., 149, 012045, https://doi.org/10.1088/1755-1315/149/1/012045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, https://doi.org/10.1029/2010JD014761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, J. I., M. D. Yamanaka, J. Matsumoto, S. Fukao, P. A. Winarso, and T. Sribimawati, 2002: Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteor. Soc. Japan, 80, 285310, https://doi.org/10.2151/jmsj.80.285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M., and J. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14, 38823887, https://doi.org/10.1175/1520-0442(2001)014<3882:SCAPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidayat, R., and S. Kizu, 2010: Influence of the Madden–Julian oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol., 30, 18161825, https://doi.org/10.1002/joc.2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, https://doi.org/10.1007/s00376-012-2015-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jhun, J. G., and E. J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726, https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X. J., and J. W. Ge, 2017: Interdecadal changes in the relationship between ENSO, EAWM, and the wintertime precipitation over China at the end of the twentieth century. J. Climate, 30, 19231937, https://doi.org/10.1175/JCLI-D-16-0422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X. J., S. Wang, H. Lin, and Q. Bao, 2015: A connection between the tropical Pacific Ocean and the winter climate in the Asian-Pacific region. J. Geophys. Res. Atmos., 120, 430448, https://doi.org/10.1002/2014JD022324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X. J., J. W. Ge, and S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent. Int. J. Climatol., 36, 33843397, https://doi.org/10.1002/joc.4562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juneng, L., and F. T. Tangang, 2005: Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dyn., 25, 337350, https://doi.org/10.1007/s00382-005-0031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juneng, L., and F. T. Tangang, 2010: Long-term trends of winter monsoon synoptic circulations over the Maritime Continent: 1962–2007. Atmos. Sci. Lett., 11, 199203, https://doi.org/10.1002/asl.272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 1997: Rainfall variability over South-east Asia—Connections with Indian monsoon and ENSO extremes: New perspectives. Int. J. Climatol., 17, 11551168, https://doi.org/10.1002/(SICI)1097-0088(199709)17:11<1155::AID-JOC188>3.0.CO;2-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 1998: The relationship between some large-scale atmospheric parameters and rainfall over Southeast Asia: A comparison with features over India. Theor. Appl. Climatol., 59 (1-2), 111, https://doi.org/10.1007/s007040050009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141162, https://doi.org/10.1007/s00376-997-0016-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limsakul, A., and P. Singhruck, 2016: Long-term trends and variability of total and extreme precipitation in Thailand. Atmos. Res., 169, 301317, https://doi.org/10.1016/j.atmosres.2015.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 10671088, https://doi.org/10.1002/joc.1952.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and J. A. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, https://doi.org/10.1038/nclimate3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett., 10, 054020, https://doi.org/10.1088/1748-9326/10/5/054020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C. H., S. Yang, W. J. Li, R. N. Zhang, and R. G. Wu, 2016: Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice. Climate Dyn., 47, 481496, https://doi.org/10.1007/s00382-015-2851-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tangang, F. T., L. Juneng, E. Salimun, P. N. Vinayachandran, Y. K. Seng, C. J. C. Reason, S. K. Behera, and T. Yasunari, 2008: On the roles of the northeast cold surge, the Borneo vortex, the Madden–Julian oscillation, and the Indian Ocean dipole during the extreme 2006/2007 flood in southern peninsular Malaysia. Geophys. Res. Lett., 35, L14S07, https://doi.org/10.1029/2008GL033429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: The structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. W. Wu, C. P. Chang, J. Liu, J. P. Li, and T. J. Zhou, 2010: Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J. Climate, 23, 14951512, https://doi.org/10.1175/2009JCLI3243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855870, https://doi.org/10.1007/s00376-009-9094-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014a: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, https://doi.org/10.1175/JCLI-D-13-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014b: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chin. Sci. Bull., 59, 430436, https://doi.org/10.1007/s11434-013-0029-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and M.-M. Lu, 2017: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast. 3rd ed. C.-P. Chang et al., Eds., World Scientific, 51–61.

    • Crossref
    • Export Citation
  • Wang, L., R. H. Huang, L. Gu, W. Chen, and L. H. Kang, 2009: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 48604872, https://doi.org/10.1175/2009JCLI2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., W. Chen, S. Chen, D. Nath, and L. Wang, 2020: Anomalous winter moisture transport associated with the recent surface warming over the Barents–Kara Seas region since the mid-2000s. Int. J. Climatol., 40, 24972505, https://doi.org/10.1002/joc.6337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Nitta, 1999: Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Climate, 12, 494510, https://doi.org/10.1175/1520-0442(1999)012<0494:DCITAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2001: Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1999). http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html.

  • Wu, B. Y., 2017: Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies. J. Climate, 30, 84698479, https://doi.org/10.1175/JCLI-D-17-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011: Effects of autumn–winter Arctic sea ice on winter Siberian high. Chin. Sci. Bull., 56, 32203228, https://doi.org/10.1007/s11434-011-4696-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., J. E. Overland, and R. D’Arrigo, 2012: Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend. Tellus, 64A, 18590, https://doi.org/10.3402/TELLUSA.V64I0.18590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, P., R. Rahmat, W. K. Cheong, and E. Wallace, 2014: Influence of Madden–Julian oscillation on Southeast Asia rainfall extremes: Observations and predictability. Geophys. Res. Lett., 41, 44064412, https://doi.org/10.1002/2014GL060241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, P., and Coauthors, 2020: Seasonal dependence of cold surges and their interaction with the Madden–Julian oscillation over Southeast Asia. J. Climate, 33, 24672482, https://doi.org/10.1175/JCLI-D-19-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, X., W. Chen, G. Fan, and D. Zhou, 2016: Possible external forcing factors for the interdecadal change in the East Asian winter monsoon around the late 1990s (in Chinese). Climatic Environ. Res., 21, 197209.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., S. Gui, and J. Cao, 2019a: Bay of Bengal–East Asia–Pacific teleconnection in boreal summer. J. Geophys. Res. Atmos., 124, 43954412, https://doi.org/10.1029/2019JD030332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., W. K. Zhang, S. Gui, Y. Tao, and J. Cao, 2019b: Rainy season precipitation variation in the Mekong River basin and its relationship to the Indian and East Asian summer monsoons. Climate Dyn., 52, 56915708, https://doi.org/10.1007/s00382-018-4471-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. Y., and R. G. Wu, 2019: Seasonal variation of precipitation over the Indochina Peninsula and its impact on the South China Sea spring warming. Int. J. Climatol., 39, 16181633, https://doi.org/10.1002/joc.5904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. Y., R. G. Wu, and C. H. Wang, 2020: Individual and combined impacts of tropical Indo-Pacific SST anomalies on interannual variation of the Indochina Peninsular precipitation. J. Climate, 33, 10691088, https://doi.org/10.1175/JCLI-D-19-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. N., C. H. Sun, R. H. Zhang, W. J. Li, and J. Q. Zuo, 2019: Role of Eurasian snow cover in linking winter–spring Eurasian coldness to the autumn Arctic sea ice retreat. J. Geophys. Res. Atmos., 124, 92059221, https://doi.org/10.1029/2019JD030339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T. T., S. Yang, X. W. Jiang, and P. Zhao, 2016: Seasonal–interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, 29, 36753695, https://doi.org/10.1175/JCLI-D-15-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 442 0 0
Full Text Views 768 220 23
PDF Downloads 730 197 4