Impact of the Indian Ocean Dipole on Evolution of the Subsequent ENSO: Relative Roles of Dynamic and Thermodynamic Processes

Zhang Yue Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Zhang Yue in
Current site
Google Scholar
PubMed
Close
,
W. Zhou Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by W. Zhou in
Current site
Google Scholar
PubMed
Close
, and
Tim Li International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The complex interaction between the Indian Ocean dipole (IOD) and El Niño–Southern Oscillation (ENSO) is further investigated in this study, with a focus on the impacts of the IOD on ENSO in the subsequent year [ENSO(+1)]. The interaction between the IOD and the concurrent ENSO [ENSO(0)] can be summarized as follows: ENSO(0) can trigger and enhance the IOD, while the IOD can enhance ENSO(0) and accelerate its demise. Regarding the impacts of IOD(0) on the subsequent ENSO(+1), it is revealed that the IOD can lead to anomalous SST cooling patterns over the equatorial Pacific after the winter following the IOD, indicating the formation of a La Niña–like pattern in the subsequent year. While the SST cooling tendency associated with a positive IOD is attributable primarily to net heat flux (thermodynamic processes) from autumn to the ensuing spring, after the ensuing spring the dominant contribution comes from oceanic processes (dynamic processes) instead. From autumn to the ensuing spring, the downward shortwave flux response contributes the most to SST cooling over the central and eastern Pacific, due to the cloud–radiation–SST feedback. From the ensuing winter to the ensuing summer, changes in latent heat flux (LHF) are important for SST cooling, indicating that the release of LHF from the ocean into the atmosphere increases due to strong evaporation and leads to SST cooling through the wind–evaporation–SST feedback. The wind stress response and thermocline shoaling verify that local Bjerknes feedback is crucial for the initiation of La Niña in the later stage.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Zhou, wenzhou@cityu.edu.hk

Abstract

The complex interaction between the Indian Ocean dipole (IOD) and El Niño–Southern Oscillation (ENSO) is further investigated in this study, with a focus on the impacts of the IOD on ENSO in the subsequent year [ENSO(+1)]. The interaction between the IOD and the concurrent ENSO [ENSO(0)] can be summarized as follows: ENSO(0) can trigger and enhance the IOD, while the IOD can enhance ENSO(0) and accelerate its demise. Regarding the impacts of IOD(0) on the subsequent ENSO(+1), it is revealed that the IOD can lead to anomalous SST cooling patterns over the equatorial Pacific after the winter following the IOD, indicating the formation of a La Niña–like pattern in the subsequent year. While the SST cooling tendency associated with a positive IOD is attributable primarily to net heat flux (thermodynamic processes) from autumn to the ensuing spring, after the ensuing spring the dominant contribution comes from oceanic processes (dynamic processes) instead. From autumn to the ensuing spring, the downward shortwave flux response contributes the most to SST cooling over the central and eastern Pacific, due to the cloud–radiation–SST feedback. From the ensuing winter to the ensuing summer, changes in latent heat flux (LHF) are important for SST cooling, indicating that the release of LHF from the ocean into the atmosphere increases due to strong evaporation and leads to SST cooling through the wind–evaporation–SST feedback. The wind stress response and thermocline shoaling verify that local Bjerknes feedback is crucial for the initiation of La Niña in the later stage.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wen Zhou, wenzhou@cityu.edu.hk
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, https://doi.org/10.1175/JCLI-3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, https://doi.org/10.1175/2008BAMS2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, https://doi.org/10.1002/joc.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., X. Wang, W. Zhou, and Z. Wen, 2018a: Interdecadal change in the summer SST–precipitation relationship around the late 1990s over the South China Sea. Climate Dyn., 51, 22292246, https://doi.org/10.1007/s00382-017-4009-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., X. Wang, W. Zhou, C. Wang, Q. Xie, G. Li, and S. Chen, 2018b: Unusual rainfall in southern China in decaying August during extreme El Niño 2015/16: Role of the western Indian Ocean and north tropical Atlantic SST. J. Climate, 31, 70197034, https://doi.org/10.1175/JCLI-D-17-0827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., T. Li, X. Shen, and B. Wu, 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 22012220, https://doi.org/10.1175/JCLI-D-15-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayan, H., J. Vialard, T. Izumo, and M. Lengaigne, 2014: Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Climate Dyn., 43, 13111325, https://doi.org/10.1007/s00382-013-1946-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30, 19711983, https://doi.org/10.1175/JCLI-D-16-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, W., C. Li, X. Wang, W. Zhou, and W. Li, 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101108, https://doi.org/10.1007/s00376-009-0101-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567582, https://doi.org/10.1007/s00382-002-0295-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 40124017, https://doi.org/10.1002/grl.50729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2013: Coupled seasonal variability in the South China Sea. J. Oceanogr., 69, 5769, https://doi.org/10.1007/s10872-012-0157-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, J. J. Luo, T. Yamagata, and G. Madec, 2014: Influence of Indian Ocean dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dyn., 42, 291310, https://doi.org/10.1007/s00382-012-1628-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, H. Dayan, M. Lengaigne, and I. Suresh, 2016: A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean dipole and basin influences on El Niño. Climate Dyn., 46, 22472268, https://doi.org/10.1007/s00382-015-2700-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X.-A., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 37773795, https://doi.org/10.1175/JCLI3516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W., W. Cai, and J.-S. Kug, 2015: Migration of atmospheric convection coupled with ocean currents pushes El Niño to extremes. Geophys. Res. Lett., 42, 35833590, https://doi.org/10.1002/2015GL063886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., J. H. Oh, and H. S. Chaudhari, 2010: Delayed influence of the Indian Ocean dipole mode on the East Asia–west Pacific monsoon: Possible mechanism. Int. J. Climatol., 30, 197209, https://doi.org/10.1002/joc.1890.

    • Search Google Scholar
    • Export Citation
  • Kug, J. S., and I. S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., T. Li, S. Il An, I. S. Kang, J. J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, https://doi.org/10.1029/2005GL024916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., A. Gruber, R. G. Ellingson, I. Laszlo, H.-T. Lee, A. Gruber, R. G. Ellingson, and I. Laszlo, 2007: Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Oceanic Technol., 24, 20292047, https://doi.org/10.1175/2007JTECHA989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, M. Y. T., H. H. N. Cheung, and W. Zhou, 2017: Meridional displacement of the East Asian trough and its response to the ENSO forcing. Climate Dyn., 48, 335352, https://doi.org/10.1007/s00382-016-3077-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, M. Y. T., W. Zhou, D. Wang, P. W. Chan, S. M. Lee, and H. W. Tong, 2020: Remote tropical western Indian Ocean forcing on changes in June precipitation in South China and the Indochina Peninsula. J. Climate, 33, 75537566, https://doi.org/10.1175/JCLI-D-19-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the western North Pacific. J. Climate, 27, 140154, https://doi.org/10.1175/JCLI-D-13-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, https://doi.org/10.1175/JAS3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C. P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and C. Li, 2017: The tropical Pacific–Indian Ocean associated mode simulated by LICOM2.0. Adv. Atmos. Sci., 34, 14261436, https://doi.org/10.1007/s00376-017-6176-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, https://doi.org/10.1029/2007GL032793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F. F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1997: The South Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 19211943, https://doi.org/10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348, https://doi.org/10.2151/jmsj.85.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and M. Watanabe, 2012: Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J. Climate, 25, 33213335, https://doi.org/10.1175/JCLI-D-11-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Q., S. P. Xie, D. Wang, Y. Kamae, H. Zhang, S. Hu, X. T. Zheng, and W. Wang, 2020: Eastern Pacific wind effect on the evolution of El Niño: Implications for ENSO diversity. J. Climate, 33, 31973212, https://doi.org/10.1175/JCLI-D-19-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño (Pacific). Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. McPhaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., and J. Matsumoto, 2000: A possible triggering process of east–west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. J. Meteor. Soc. Japan, 78, 803818, https://doi.org/10.2151/jmsj1965.78.6_803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., Y. Qin, X. Xiao, Z. Zhang, and X. Wu, 2012: El Niño and El Niño Modoki variability based on a new ocean reanalysis. Ocean Dyn., 62, 13111322, https://doi.org/10.1007/s10236-012-0566-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, D. Chen, W. Wang, W. Zhou, and D. Chen, 2014: Summer high temperature extremes in southeast China: Bonding with the El Niño–Southern Oscillation and East Asian summer monsoon coupled system. J. Climate, 27, 41224138, https://doi.org/10.1175/JCLI-D-13-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Li, and W. Zhou, 2006: Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean. Int. J. Climatol., 26, 595606, https://doi.org/10.1002/joc.1283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Wang, and W. Zhou, 2009: Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophys. Res. Lett., 36, L11701, https://doi.org/10.1029/2009GL037929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Zhou, C. Li, and D. Wang, 2014: Comparison of the impact of two types of El Niño on tropical cyclone genesis over the South China Sea. Int. J. Climatol., 34, 26512660, https://doi.org/10.1002/joc.3865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009a: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009b: Contrast of rainfall–SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers. J. Climate, 22, 43984405, https://doi.org/10.1175/2009JCLI2648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 40194031, https://doi.org/10.1175/1520-0442(2004)017<4019:UTIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, G., T. Yasuda, Y. Fujii, and S. Matsumoto, 2009: Rapid termination of the 2006 El Niño and its relation to the Indian Ocean. Geophys. Res. Lett., 36, L07702, https://doi.org/10.1029/2009GL037298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., 2005: Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere-ocean general circulation model. Geophys. Res. Lett., 32, L13707, https://doi.org/10.1029/2005GL023406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett., 29, 1204, https://doi.org/10.1029/2001GL014098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., J. C. L. Chan, W. Zhou, and C. Li, 2008a: Decadal and interannual variability of the Indian Ocean dipole. Adv. Atmos. Sci., 25, 856866, https://doi.org/10.1007/s00376-008-0856-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, W. Zhou, and C. Li, 2008b: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, https://doi.org/10.1002/joc.1678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., W. Zhou, H. Yang, and C. Li, 2008c: Warming in the northwestern Indian Ocean associated with the El Niño event. Adv. Atmos. Sci., 25, 246252, https://doi.org/10.1007/s00376-008-0246-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Wang, F.-F. Jin, M. F. Stuecker, and A. G. Turner, 2015: Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett., 42, 85708576, https://doi.org/10.1002/2015GL065703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Zhou, E. C. H. Chow, and M. Y. T. Leung, 2019a: Delayed impacts of the IOD: Cross-seasonal relationships between the IOD, Tibetan Plateau snow, and summer precipitation over the Yangtze–Huaihe River region. Climate Dyn., 53, 40774093, https://doi.org/10.1007/s00382-019-04774-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. Zhou, and M. Y. T. Leung, 2019b: Phase relationship between summer and winter monsoons over the South China Sea: Indian Ocean and ENSO forcing. Climate Dyn., 52, 52295248, https://doi.org/10.1007/s00382-018-4440-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 834 0 0
Full Text Views 2237 1087 155
PDF Downloads 1768 556 42