• Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, W., R. Seager, W. Baethgen, and M. Cane, 2017a: Life cycles of agriculturally relevant ENSO teleconnections in North and South America. Int. J. Climatol., 37, 32973318, https://doi.org/10.1002/joc.4916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, W., R. Seager, W. Baethgen, and M. Cane, 2017b: Crop production variability in North and South America forced by life-cycles of the El Niño–Southern Oscillation. Agric. For. Meteor., 239, 151165, https://doi.org/10.1016/j.agrformet.2017.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, J. O. Adegoke, S. D. Schubert, and P. J. Pegion, 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887, https://doi.org/10.1175/JCLI4212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y., S. D. Schubert, R. D. Koster, A. M. Molod, and H. Wang, 2019: Tendency bias correction in coupled and uncoupled global climate models with a focus on impacts over North America. J. Climate, 32, 639661, https://doi.org/10.1175/JCLI-D-18-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11, 24912504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, https://doi.org/10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, S. W., and J. Y. Yu, 2020: A control of ENSO transition complexity by tropical Pacific mean SSTs through tropical–subtropical interaction. Geophys. Res. Lett., 47, e2020GL087933, https://doi.org/10.1029/2020GL087933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., M. Ting, Z. Wen, and D. Eun Lee, 2017: Distinct patterns of tropical Pacific SST anomaly and their impacts on North American climate. J. Climate, 30, 52215241, https://doi.org/10.1175/JCLI-D-16-0488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, https://doi.org/10.1007/s00382-013-1917-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, R. Seager, and W. B. Anderson, 2020: ENSO teleconnections and impacts on U.S. summertime temperature during a multiyear La Niña life cycle. J. Climate, 33, 60096024, https://doi.org/10.1175/JCLI-D-19-0701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I. S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, https://doi.org/10.1175/2011JCLI4177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., A. Leetmaa, M. J. Nath, and H.-L. Wang, 2005: Influences of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18, 29222942, https://doi.org/10.1175/JCLI3445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D. E., M. Ting, N. Vigaud, Y. Kushnir, and A. G. Barnston, 2018: Atlantic multidecadal variability as a modulator of precipitation variability in the Southwest United States. J. Climate, 31, 55255542, https://doi.org/10.1175/JCLI-D-17-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y.-C., J.-Y. Yu, M.-H. Lo, and C. Wang, 2015: The changing influence of El Niño on the Great Plains low-level jet. Atmos. Sci. Lett., 16, 512517, https://doi.org/10.1002/asl.590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, A. Z., M. Ting, and H. Wang, 1998: Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J. Atmos. Sci., 55, 28102832, https://doi.org/10.1175/1520-0469(1998)055<2810:MOCADT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. Central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., S. K. Lee, S. Dong, G. Goni, B. Kirtman, R. Atlas, and A. Kumar, 2019: East Asian monsoon as a modulator of U.S. Great Plains heat waves. J. Geophys. Res. Atmos., 124, 63426358, https://doi.org/10.1029/2018JD030151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malloy, K. M., and B. P. Kirtman, 2020: Predictability of midsummer Great Plains low-level jet and associated precipitation. Wea. Forecasting, 35, 215235, https://doi.org/10.1175/WAF-D-19-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36, L13703, https://doi.org/10.1029/2009GL038774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, A. L., and S.-P. Xie, 2016: Summer U.S. surface air temperature variability: Controlling factors and AMIP simulation biases. J. Climate, 29, 51235139, https://doi.org/10.1175/JCLI-D-15-0705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, and L. Wang, 2019: Weather within climate: Sub-seasonal predictability of tropical daily rainfall characteristics. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. Robertson and F. Vitart, Eds., Elsevier, 47–65.

    • Crossref
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128134, https://doi.org/10.1002/2013GL058055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, https://doi.org/10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys. Res. Lett., 44, 85208529, https://doi.org/10.1002/2017GL074088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2019: ENSO diversity from an atmospheric perspective. Curr. Climate Change Rep., 5, 245257, https://doi.org/10.1007/s40641-019-00138-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 64816504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., and T. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Y. Chang, H. Wang, R. D. Koster, and A. M. Molod, 2019: A systematic approach to assessing the sources and global impacts of errors in climate models. J. Climate, 32, 83018321, https://doi.org/10.1175/JCLI-D-19-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., J. Nakamura, and M. Ting, 2020: Prediction of seasonal meteorological drought onset and termination over the southern Great Plains in the North American Multimodel Ensemble. J. Hydrometeor., 21, 22372255, https://doi.org/10.1175/JHM-D-20-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of U.S. heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, https://doi.org/10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernieres, G., M. Rienecker, R. Kovach, and C. L. Keppenne, 2012: The GEOS-iODAS: Description and evaluation. Technical Report Series on Global Modeling and Data Assimilation, M. J. Suarez, Ed., Vol. 30, NASA Tech Memo. NASA/TM-2012-104606, 73 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Vernieres589.pdf.

  • Vitart, F., 2017: Madden–Julian Oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93117, https://doi.org/10.1007/s00382-008-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. D. Schubert, and R. D. Koster, 2017: North American drought and links to northern Eurasia: The role of stationary Rossby waves. Climate Extremes: Patterns and Mechanisms, S.-Y. S. Wang et al., Eds., Amer. Geophys. Union, 195–221.

    • Crossref
    • Export Citation
  • Wang, Z., C.-P. Chang, and B. Wang, 2007: Impacts of El Niño and La Niña on the U.S. climate during northern summer. J. Climate, 20, 21652177, https://doi.org/10.1175/JCLI4118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Regimes of seasonal air-sea interaction and implications for performance of forced simulations. Climate Dyn., 29, 393410, https://doi.org/10.1007/s00382-007-0246-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., Y. M. Okumura, and P. N. Dinezio, 2019: What controls the duration of El Niño and La Niña events? J. Climate, 32, 59415965, https://doi.org/10.1175/JCLI-D-18-0681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, and K. M. Hu, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., and Coauthors, 2020: Climatology and interannual variability of floods during the TRMM era (1998–2013). J. Climate, 33, 32893305, https://doi.org/10.1175/JCLI-D-19-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and S. W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophys. Res. Lett., 45, 66116618, https://doi.org/10.1029/2018GL077664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability over the Indo–western Pacific. J. Climate, 31, 22532265, https://doi.org/10.1175/JCLI-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 73137327, https://doi.org/10.1175/JCLI-D-16-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 114 114
Full Text Views 30 30 30
PDF Downloads 29 29 29

Assessing ENSO Summer Teleconnections, Impacts, and Predictability in North America

View More View Less
  • 1 NOAA/Physical Sciences Laboratory, Boulder, Colorado
  • 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

During the summer when an El Niño event is transitioning to a La Niña event, the extratropical teleconnections exert robust warming anomalies over the U.S. Midwest threatening agricultural production. This study assesses the performance of current climate models in capturing the prominent observed extratropical responses over North America during the transitioning La Niña summer, based on atmospheric general circulation model experiments and coupled models from the North American Multimodel Ensemble (NMME). The ensemble mean of the SST-forced experiments across the transitioning La Niña summers does not capture the robust warming in the Midwest. The SST-forced experiments do not produce consistent subtropical western Pacific (WP) negative precipitation anomalies and this leads to the poor simulations of extratropical teleconnections over North America. In the NMME models, with active air–sea interaction, the negative WP precipitation anomalies show better agreement across the models and with observations. However, the downstream wave train pattern and the resulting extratropical responses over North America exhibit large disagreement across the models and are consistently weaker than in observations. Furthermore, in these climate models, an anomalous anticyclone does not robustly translate into a warm anomaly over the Midwest, in disagreement with observations. This work suggests that, during the El Niño to La Niña transitioning summer, active air–sea interaction is important in simulating tropical precipitation over the WP. Nevertheless, skillful representations of the Rossby wave propagation and land–atmosphere processes in climate models are also essential for skillful simulations of extratropical responses over North America.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bor-Ting Jong, bor-ting.jong@noaa.gov

Abstract

During the summer when an El Niño event is transitioning to a La Niña event, the extratropical teleconnections exert robust warming anomalies over the U.S. Midwest threatening agricultural production. This study assesses the performance of current climate models in capturing the prominent observed extratropical responses over North America during the transitioning La Niña summer, based on atmospheric general circulation model experiments and coupled models from the North American Multimodel Ensemble (NMME). The ensemble mean of the SST-forced experiments across the transitioning La Niña summers does not capture the robust warming in the Midwest. The SST-forced experiments do not produce consistent subtropical western Pacific (WP) negative precipitation anomalies and this leads to the poor simulations of extratropical teleconnections over North America. In the NMME models, with active air–sea interaction, the negative WP precipitation anomalies show better agreement across the models and with observations. However, the downstream wave train pattern and the resulting extratropical responses over North America exhibit large disagreement across the models and are consistently weaker than in observations. Furthermore, in these climate models, an anomalous anticyclone does not robustly translate into a warm anomaly over the Midwest, in disagreement with observations. This work suggests that, during the El Niño to La Niña transitioning summer, active air–sea interaction is important in simulating tropical precipitation over the WP. Nevertheless, skillful representations of the Rossby wave propagation and land–atmosphere processes in climate models are also essential for skillful simulations of extratropical responses over North America.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bor-Ting Jong, bor-ting.jong@noaa.gov
Save