• Akinsanola, A. A., G. J. Kooperman, A. G. Pendergrass, W. M. Hannah, and K. A. Reed, 2020: Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environ. Res. Lett., 15, 104078, https://doi.org/10.1088/1748-9326/abb397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alapaty, K., and Coauthors, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL054031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Awan, N. K., H. Truhetz, and A. Gobiet, 2011: Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the Alpine region: An ensemble-based analysis. J. Climate, 24, 31073123, https://doi.org/10.1175/2011JCLI3674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. P. Chaboureau, A. C. M. Beljaars, A. K. Betts, M. Kohler, M. Miller, and J. L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in global models. Quart. J. Roy. Meteor. Soc., 130, 31193137, https://doi.org/10.1256/qj.03.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in predicting atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casanueva, A., and Coauthors, 2016: Daily precipitation statistics in a EURO-CORDEX RCM ensemble: Added value of raw and bias-corrected high-resolution simulations. Climate Dyn., 47, 719737, https://doi.org/10.1007/s00382-015-2865-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2019: Precipitation characteristics in the Community Atmosphere Model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst., 11, 23522374, https://doi.org/10.1029/2018MS001536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model. NCAR Tech. Note NCAR/TN-464+STR, 226 pp.

  • Coppola, E., F. Giorgi, L. Mariotti, and X. Bi, 2012: RegT-Band: A tropical band version of RegCM4. Climate Res., 52, 115133, https://doi.org/10.3354/cr01078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., C. Doutriaus, P. J. Gleckler, K. E. Taylor, K. E. Trenberth, and Y. Zhang, 2018: High-frequency intermittency in observed and model-simulated precipitation. Geophys. Res. Lett., 45, 12 51412 522, https://doi.org/10.1029/2018GL078926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14, 10921111, https://doi.org/10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demory, M.-E., P. L. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, https://doi.org/10.1007/s00382-013-1924-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández, J., J. P. Montávez, J. Sáenz, J. F. González-Rouco, and E. Zorita, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. J. Geophys. Res., 112, D04101, https://doi.org/10.1029/2005JD006649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. Xiao, D. Chen, J. Xu, and H. Zhang, 2017: Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. Int. J. Climatol., 38, 12851297, https://doi.org/10.1002/joc.5243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Díez, M., J. Fernández, and R. Vautard, 2015: An RCM multi-physics ensemble over Europe: Multi-variable evaluation to avoid error compensation. Climate Dyn., 45, 31413156, https://doi.org/10.1007/s00382-015-2529-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and W. J. Gutowski, 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467490, https://doi.org/10.1146/annurev-environ-102014-021217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., F. Raffaele, and E. Coppola, 2019: The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn., 10, 7389, https://doi.org/10.5194/esd-10-73-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., S.-Y. Hong, and Y. C. Kwon, 2020: The performance of a revised simplified Arakawa–Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model. Wea. Forecasting, 35, 11131128, https://doi.org/10.1175/WAF-D-19-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., J. Kala, C. C. Carouge, M. G. De Kauwe, G. Di Virgilio, A. M. Ukkola, J. P. Evans, and G. Abramowitz, 2019: Evaluation of the CABLEv2.3.4 land surface model coupled to NU-WRFv3.9.1.1 in simulating temperature and precipitation means and extremes over CORDEX Australasia within a WRF physics ensemble. J. Adv. Model. Earth Syst., 11, 44664488, https://doi.org/10.1029/2019MS001845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., S. Blenkinsop, and H. J. Fowler, 2018: When will we detect changes in short-duration precipitation extremes? J. Climate, 31, 29452964, https://doi.org/10.1175/JCLI-D-17-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, X., A. Wang, X. Bi, X. Li, and H. Zhang, 2020: Effects of horizontal resolution on hourly precipitation in AGCM simulations. J. Hydrometeor., 21, 643670, https://doi.org/10.1175/JHM-D-19-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103529, https://doi.org/10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, https://doi.org/10.1029/2005GL023680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2013: Evaluation of the sensitivity of the Weather Research and Forecasting model to parameterization schemes for regional climates of Europe over the period 1990–95. J. Climate, 26, 10021017, https://doi.org/10.1175/JCLI-D-11-00676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murthi, A., K. P. Bowman, and L. R. Lenug, 2011: Simulations of precipitation using NRCM and comparisons with satellite observations and CAM: Annual cycle. Climate Dyn., 36, 16591679, https://doi.org/10.1007/s00382-010-0878-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., M. Münnich, H. Su, J. E. Meyerson, and C. E. Holloway, 2006: Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA, 103, 61106115, https://doi.org/10.1073/pnas.0601798103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordeng, T.-E., 1995: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp., https://www.ecmwf.int/en/elibrary/11393-extended-versions-convective-parametrization-shcem-ecmwf-and-their-impact-mean.

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951410, https://doi.org/10.1175/BAMS-88-9-1395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and R. Knutti, 2018: The uneven nature of daily precipitation and its change. Geophys. Res. Lett., 45, 11 98011 988, https://doi.org/10.1029/2018GL080298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X. Liang, 2015: Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J. Adv. Model. Earth Syst., 8, 764785, https://doi.org/10.1002/2015MS000621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, S., X. Liu, C. Wu, and H. Brown, 2019: Exploring a variable-resolution approach for simulating regional climate over the Tibetan Plateau using VRCESM. J. Geophys. Res. Atmos., 124, 44904513, https://doi.org/10.1029/2018JD028925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., C. D. Zhang, M. W. Moncrieff, J. Dudhia, J. M. Caron, L. R. Leung, and C. Bruyere, 2011: Role of the atmospheric mean state on the initiation of the Madden–Julian oscillation in a tropical channel model. Climate Dyn., 36, 161184, https://doi.org/10.1007/s00382-010-0859-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466, https://doi.org/10.1175/JCLI-D-11-00725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeer, K., G. Kirchengast, and S. O, 2018: Strong dependence of extreme convective precipitation intensities on gauge network density. Geophys. Res. Lett., 45, 82538263, https://doi.org/10.1029/2018GL077994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Song, F., and G. J. Zhang, 2017: Improving trigger functions for convective parameterization schemes using GOAmazon observations. J. Climate, 30, 87118726, https://doi.org/10.1175/JCLI-D-17-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and X. Bi, 2019: Validation for a tropical belt version of WRF: Sensitivity tests on radiation and cumulus convection parameterizations. Atmos. Oceanic Sci. Lett., 12, 192200, https://doi.org/10.1080/16742834.2019.1590118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Tewari, M., and Coauthors, 2004: Implementation and verification of the Unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiwari, P. R., S. C. Kar, U. C. Mohanty, S. Dey, S. Kumari, P. Sinha, P. V. S. Raju, and M. S. Shekhar, 2016: Simulations of tropical circulation and winter precipitation over North India: An application of a tropical band version of regional climate model (RegT-Band). Pure Appl. Geophys., 173, 657674, https://doi.org/10.1007/s00024-015-1102-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, and M. Gehne, 2017: Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeor., 18, 13931412, https://doi.org/10.1175/JHM-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., G. N. Kiladis, and A. Suzuki-Parker, 2011: Convectively coupled Kelvin and easterly waves in a regional climate simulation of the tropics. Climate Dyn., 36, 185203, https://doi.org/10.1007/s00382-009-0697-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2016: The Tropical Rain Belts with an Annual Cycle and a Continent Model Intercomparison Project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J. F., P. A. Dirmeyer, Z. L. Yang, and H. Chen, 2018: Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability. Theor. Appl. Climatol., 134, 793800, https://doi.org/10.1007/s00704-017-2310-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., J. P. Evans, R. Mehrotra, and A. Sharma, 2013: A conditional disaggregation algorithm for generating fine time-scale rainfall data in a warmer climate. J. Hydrol., 479, 8699, https://doi.org/10.1016/j.jhydrol.2012.11.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, L., 2013: The effect of time steps and time-scales on parameterization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, https://doi.org/10.1002/qj.1992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woelfle, M. D., C. S. Bretherton, C. Hannay, and R. Neale, 2017: Evolution of the double-ITCZ bias through CESM2 development. J. Adv. Model. Earth Syst., 11, 18731893, https://doi.org/10.1029/2019MS001647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, https://doi.org/10.1175/2008JAMC1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yaroah, F. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates. J. Hydrometeor., 18, 16171641, https://doi.org/10.1175/JHM-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., X. Liang, and E. F. Wood, 2012: WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Climate Dyn., 39, 20412058, https://doi.org/10.1007/s00382-011-1241-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Y. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 59235941, https://doi.org/10.1175/JCLI-D-16-0597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and H. Chen, 2016: Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: Mean state, frequency–intensity relationship, diurnal cycle, and influencing factors. J. Climate, 29, 10671089, https://doi.org/10.1175/JCLI-D-15-0342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010, https://doi.org/10.1175/2008JCLI2028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., 2014: Multidecadal trends in the duration of wet spells and associated intensity of precipitation as revealed by a very dense observational German network. Environ. Res. Lett., 9, 025003, https://doi.org/10.1088/1748-9326/9/2/025003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 433 433 55
Full Text Views 152 152 13
PDF Downloads 177 177 10

The Hourly Precipitation Frequencies in the Tropical-Belt Version of WRF: Sensitivity to Cumulus Parameterization and Radiation Schemes

View More View Less
  • 1 a Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 b Key Laboratory of Meteorological Disaster, Ministry of Education and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 c Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 4 d State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 5 e JingZhou Meteorological Service, Hubei, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The sensitivity of hourly precipitation to cumulus parameterization and radiation schemes is explored by using the tropical-belt configuration of the Weather Research and Forecasting (WRF) Model. The domain covers the entire tropical region from 45°S to 45°N with a grid spacing of about 45 km. A series of 5-yr simulations with four cumulus parameterization schemes [new Tiedtke (NT), Kain–Fritsch (KF), new SAS (NS), and Tiedtke (TK)] and two radiation schemes (RRTMG and CAM) are carried out. We focus on the frequencies of hourly precipitation above three thresholds (0.02 mm h−1 = light drizzle rate; 0.2 mm h−1 = moderate rate; and 2 mm h−1 = heavy rate) between the observed CMORPH products and simulations. The sensitivity is higher for precipitation frequency than amount, and frequency is dominated by the cumulus parameterization. Frequencies above the moderate rate are well reproduced, whereas frequencies above the other two rates present large deviations. No combination of physical schemes is found to perform best in reproducing the frequencies above all thresholds. Simulations using the NT and NS schemes show higher precipitation frequencies above the light drizzle rate and lower precipitation frequencies above the heavy rate than those simulations using the KF and TK schemes. Precipitation frequency is higher when reproduced by experiments using the RRTMG scheme than those using the CAM scheme, except for frequencies above the light rate over oceans. The overestimation of frequency is mainly caused by too-frequent convective rainfall. The results imply that the triggering based on the vertical velocity may increase the occurrence of a rain event and that CAPE-based closure may increase the heavy precipitation frequency in the cumulus parameterization.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianghui Kong, kongxianghui@mail.iap.ac.cn

Abstract

The sensitivity of hourly precipitation to cumulus parameterization and radiation schemes is explored by using the tropical-belt configuration of the Weather Research and Forecasting (WRF) Model. The domain covers the entire tropical region from 45°S to 45°N with a grid spacing of about 45 km. A series of 5-yr simulations with four cumulus parameterization schemes [new Tiedtke (NT), Kain–Fritsch (KF), new SAS (NS), and Tiedtke (TK)] and two radiation schemes (RRTMG and CAM) are carried out. We focus on the frequencies of hourly precipitation above three thresholds (0.02 mm h−1 = light drizzle rate; 0.2 mm h−1 = moderate rate; and 2 mm h−1 = heavy rate) between the observed CMORPH products and simulations. The sensitivity is higher for precipitation frequency than amount, and frequency is dominated by the cumulus parameterization. Frequencies above the moderate rate are well reproduced, whereas frequencies above the other two rates present large deviations. No combination of physical schemes is found to perform best in reproducing the frequencies above all thresholds. Simulations using the NT and NS schemes show higher precipitation frequencies above the light drizzle rate and lower precipitation frequencies above the heavy rate than those simulations using the KF and TK schemes. Precipitation frequency is higher when reproduced by experiments using the RRTMG scheme than those using the CAM scheme, except for frequencies above the light rate over oceans. The overestimation of frequency is mainly caused by too-frequent convective rainfall. The results imply that the triggering based on the vertical velocity may increase the occurrence of a rain event and that CAPE-based closure may increase the heavy precipitation frequency in the cumulus parameterization.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianghui Kong, kongxianghui@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.57 MB)
Save