• Alexander, L. V., 2011: Extreme heat rooted in dry soils. Nat. Geosci., 4, 1213, https://doi.org/10.1038/ngeo1045.

  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and G. B. Goodrich, 2011: Interannual variations in the local spatial autocorrelation of tropospheric temperatures. Theor. Appl. Climatol., 103, 451457, https://doi.org/10.1007/s00704-010-0313-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217223, https://doi.org/10.1256/wea.74.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, https://doi.org/10.1029/2006JD008091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budikova, D., T. W. Ford, and T. J. Ballinger, 2019: United States heat wave frequency and Arctic Ocean marginal sea ice variability. J. Geophys. Res. Atmos., 124, 62476264, https://doi.org/10.1029/2018JD029365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2018: Projected changes in climate extremes in China in a 1.5°C warmer world. Int. J. Climatol., 38, 36073617, https://doi.org/10.1002/joc.5521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2018: Large-scale circulation anomalies and intraseasonal oscillations associated with long-lived extreme heat events in South China. J. Climate, 31, 213232, https://doi.org/10.1175/JCLI-D-17-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2020: Strengthened connection between springtime North Atlantic Oscillation and North Atlantic tripole SST pattern since the late 1980s. J. Climate, 33, 20072022, https://doi.org/10.1175/JCLI-D-19-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529533, https://doi.org/10.1038/nature03972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claud, C., B. Duchiron, and P. Terray, 2007: Associations between large-scale atmospheric circulation and polar low developments over the North Atlantic during winter. J. Geophys. Res., 112, D12101, https://doi.org/10.1029/2006JD008251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, P. Zhao, and Z. Wang, 2019: Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. J. Climate, 32, 37613775, https://doi.org/10.1175/JCLI-D-18-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, T., H. Gao, and W. Li, 2018: Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows. Int. J. Climatol., 38, 35793594, https://doi.org/10.1002/joc.5518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, W. Chen, X. Liu, R. Lu, and Y. Sun, 2016: Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes. Adv. Atmos. Sci., 33, 10051023, https://doi.org/10.1007/s00376-016-5247-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 10191034, https://doi.org/10.2151/jmsj.2004.1019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, https://doi.org/10.1256/qj.02.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, https://doi.org/10.1038/ngeo866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, T., M. Gemmer, L. Liu, and B. Su, 2012: Change-points in climate extremes in the Zhujiang River Basin, South China, 1961–2007. Climatic Change, 110, 783799, https://doi.org/10.1007/s10584-011-0123-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., J. Yang, B. Wang, S. Zhou, D. Gong, and S. Kim, 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Climate Dyn., 51, 44214437, https://doi.org/10.1007/s00382-017-3526-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, T., J. Y. Yu, and H. Paek, 2017: Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theor. Appl. Climatol., 129, 815831, https://doi.org/10.1007/s00704-016-1801-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., D. A. Stone, P. A. Stott, T. Nozawa, A. Y. Karpechko, G. C. Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of polar warming to human influence. Nat. Geosci., 1, 750754, https://doi.org/10.1038/ngeo338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, I., and P. J. Klotzbach, 2009: A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res., 114, D24107, https://doi.org/10.1029/2009JD012728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpaz, T., B. Ziv, H. Saaroni, and E. Beja, 2014: Extreme summer temperatures in the East Mediterranean-dynamical analysis. Int. J. Climatol., 34, 849862, https://doi.org/10.1002/joc.3727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, H., J. Sun, and H. Wang, 2020: Interdecadal variation in the frequency of extreme hot events in Northeast China and the possible mechanism. Atmos. Res., 244, 105065, https://doi.org/10.1016/j.atmosres.2020.105065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R. M., J. S. Mankin, C. Lesk, E. Coffel, and C. Raymond, 2016: A review of recent advances in research on extreme heat events. Curr. Climate Change Rep., 2, 242259, https://doi.org/10.1007/s40641-016-0042-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, L., and G. Huang, 2020: The changes of high-temperature extremes and their links with atmospheric circulation over the Northern Hemisphere. Theor. Appl. Climatol., 139, 261274, https://doi.org/10.1007/s00704-019-02970-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., Y. Qian, and J. Zhu, 2010: Trends of temperature extremes in China and their relationship with global temperature anomalies. Adv. Atmos. Sci., 27, 937946, https://doi.org/10.1007/s00376-009-9085-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., and Z. Yan, 1999: The East Asian summer monsoon circulation anomaly index and its interannual variations. Chinese Sci. Bull., 44, 13251329, https://doi.org/10.1007/BF02885855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–36.

    • Crossref
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W. S., and M. I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 48154830, https://doi.org/10.1002/joc.4671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., S. He, Y. Gao, H. Chen, and H. Wang, 2020: North Atlantic modulation of interdecadal variations in hot drought events over northeastern China. J. Climate, 33, 43154332, https://doi.org/10.1175/JCLI-D-19-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., and J. Sun, 2018: Interdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patterns. Atmos. Oceanic Sci. Lett., 11, 6370, https://doi.org/10.1080/16742834.2017.1335580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126135, https://doi.org/10.1007/s00376-007-0126-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Department of Meteorology Statistical Forecasting Project Scientific Rep. 1, 49 pp.

  • Lu, R., and Z. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 20582072, https://doi.org/10.1175/2008JCLI2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., and R. Chen, 2016: A review of recent studies on extreme heat in China. Atmos. Oceanic Sci. Lett., 9, 114121, https://doi.org/10.1080/16742834.2016.1133071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703720, https://doi.org/10.1175/JCLI-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2020: Summer heat extremes in northern continents linked to developing ENSO events. Environ. Res. Lett., 15, 074042, https://doi.org/10.1088/1748-9326/ab7d07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, https://doi.org/10.1029/2010GL042845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. V. G. de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, https://doi.org/10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morak, S., G. C. Hegerl, and N. Christidis, 2013: Detectable changes in the frequency of temperature extremes. J. Climate, 26, 15611574, https://doi.org/10.1175/JCLI-D-11-00678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 12131233, https://doi.org/10.1256/qj.03.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., and S. I. Seneviratne, 2012: Global changes in extreme events: Regional and seasonal dimension. Climatic Change, 110, 669696, https://doi.org/10.1007/s10584-011-0122-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., 2005: Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys. Res. Lett., 32, L06707, https://doi.org/10.1029/2005GL022427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quenouille, M. H., 1952: Associated Measurements. Academic Press, 242 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohde, R., and Coauthors, 2013: Berkeley Earth temperature averaging process. Geoinfo. Geostat., 1 (2), https://doi.org/10.4172/2327-4581.1000103.

    • Search Google Scholar
    • Export Citation
  • Sanderson, M. G., D. L. Hemming, and R. A. Betts, 2011: Regional temperature and precipitation changes under high-end (≥4°C) global warming. Philos. Trans. Roy. Soc., 369A, 8598, https://doi.org/10.1098/rsta.2010.0283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and G. Jendritzky, 2004: Hot news from summer 2003. Nature, 432, 559560, https://doi.org/10.1038/432559a.

  • Schlesinger, M., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaposhnikov, D., and Coauthors, 2014: Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology, 25, 359364, https://doi.org/10.1097/EDE.0000000000000090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., Y. Wang, X. Wang, and P. Tian, 2019: Interdecadal variations in the frequency of persistent hot events in boreal summer over midlatitude Eurasia. J. Climate, 32, 51615177, https://doi.org/10.1175/JCLI-D-18-0706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 76337649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and S. Zhao, 2015: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16853, https://doi.org/10.1038/srep16853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2012: Possible impact of the summer North Atlantic Oscillation on extreme hot events in China. Atmos. Oceanic Sci. Lett., 5, 231234, https://doi.org/10.1080/16742834.2012.11446996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2014: Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Chin. Sci. Bull., 59, 34653470, https://doi.org/10.1007/s11434-014-0425-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, and W. Yuan, 2011: Decadal variability of the extreme hot event in China and its association with atmospheric circulations (in Chinese). Climate Environ. Res., 16, 199208.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wang, H. Ting, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., T. Iwamoto, M. Ogi, and Y. Watanabe, 2004: Abnormal meridional temperature gradient and its relation to the Okhotsk high. J. Roy. Meteor. Soc., 82, 13991415, https://doi.org/10.2151/jmsj.2004.1399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes. Climatic Change, 79, 185211, https://doi.org/10.1007/s10584-006-9051-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thirumalai, K., P. N. DiNezio, Y. Okumura, and C. Deser, 2017: Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun., 8, 15531, https://doi.org/10.1038/ncomms15531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2015: The north China/northeastern Asia severe summer drought in 2014. J. Climate, 28, 66676681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong, 2013: Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos., 118, 83068319, https://doi.org/10.1002/jgrd.50633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, and D. Chen, 2014: Summer high temperature extremes in southeast China: Bonding with the El Niño–Southern Oscillation and East Asian summer monsoon coupled system. J. Climate, 27, 41224138, https://doi.org/10.1175/JCLI-D-13-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Li, X. Wang, and D. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 29232941, https://doi.org/10.1007/s00382-015-2741-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. A. Francis, 2019: Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Climate, 32, 11371150, https://doi.org/10.1175/JCLI-D-18-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019: The British–Baikal corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and C. Li, 2005: Diagnostic study of serious high temperature over South China in 2003 summer (in Chinese). Climate Environ. Res., 10, 8085.

    • Search Google Scholar
    • Export Citation
  • Yin, Z., H. Wang, and X. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and Central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., Z. Yan, N. Freychet, and Z. Li, 2020: Trends in summer heatwaves in central Asia from 1917 to 2016: Association with large-scale atmospheric circulation patterns. Int. J. Climatol., 40, 115127, https://doi.org/10.1002/joc.6197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. de Noblet-Ducoudré, and P. Yiou, 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, https://doi.org/10.1175/2009JCLI2568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and X. Pan, 2003: Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett., 30, 1913, https://doi.org/10.1029/2003GL018004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., C. Sun, and W. Li, 2018: Relationship between the interannual variations of Arctic sea ice and summer Eurasian teleconnection and associated influence on summer precipitation over China (in Chinese). Chin. J. Geophys., 61, 91105.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., C. Sun, J. Zhu, R. Zhang, and W. Li, 2020: Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Climate Atmos. Sci., 3 (7), https://doi.org/10.1038/s41612-020-0110-8.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., B. Sun, and H. Wang, 2020a: Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. Int. J. Climatol., 40, 841857, https://doi.org/10.1002/joc.6242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, B., B. Sun, H. Li, and H. Wang, 2020b: Interdecadal variations in extreme high–temperature events over southern China in the early 2000s and the influence of the Pacific decadal oscillation. Atmosphere, 11, 829, https://doi.org/10.3390/atmos11080829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziv, B., H. Saaroni, and P. Alpert, 2004: The factors governing the summer regime of the eastern Mediterranean. Int. J. Climatol., 24, 18591871, https://doi.org/10.1002/joc.1113.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 378 378 63
Full Text Views 344 344 41
PDF Downloads 451 451 51

Variations in Summer Extreme High-Temperature Events over Northern Asia and the Possible Mechanisms

View More View Less
  • 1 a Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 b University of Chinese Academy of Sciences, Beijing, China
  • | 3 c Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, interannual and interdecadal variations in the extreme high-temperature event (EHE) frequency over northern Asia (NA) and the associated possible mechanisms are explored. On an interannual time scale, the first two empirical orthogonal function modes of the NA EHE frequency exhibit a meridional dipole pattern (EOF1) and diagonal tripolar pattern (EOF2), respectively. The higher NA EHE frequency is related to anomalous local highs, reduced mid- to low clouds, and more solar radiation. The warmer ground further heats the overlying atmosphere through longwave radiation and sensible heat. The warm temperature advection in the lower troposphere and the drier soil conditions also favor higher EHE frequency. Further analysis reveals that the EOF1 mode is related to the Polar–Eurasian teleconnection pattern (POL), while the EOF2 mode is associated with North Atlantic Oscillation (NAO) and Pacific–Japan/East Asia–Pacific pattern (PJ/EAP). The fitted EHE frequency based on the atmospheric factors (POL, NAO, and PJ/EAP) can explain the interannual variation in the regionally averaged EHE frequency by 33.8%. Furthermore, three anomalous sea surface temperature (SST) patterns over the North Atlantic–Mediterranean Sea region and around the Maritime Continent are associated with the two EHE modes by intensifying the pronounced atmospheric teleconnections. Analysis on the simulation of five models in the Atmospheric Model Intercomparison Project experiment further confirms the impact of the pronounced SST patterns on the POL, NAO and PJ/EAP. In addition, NA EHE frequency experienced a significant interdecadal increase around the mid-1990s, which could be associated with the phase shift of the Atlantic multidecadal oscillation and long-term global warming trend.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Abstract

In this study, interannual and interdecadal variations in the extreme high-temperature event (EHE) frequency over northern Asia (NA) and the associated possible mechanisms are explored. On an interannual time scale, the first two empirical orthogonal function modes of the NA EHE frequency exhibit a meridional dipole pattern (EOF1) and diagonal tripolar pattern (EOF2), respectively. The higher NA EHE frequency is related to anomalous local highs, reduced mid- to low clouds, and more solar radiation. The warmer ground further heats the overlying atmosphere through longwave radiation and sensible heat. The warm temperature advection in the lower troposphere and the drier soil conditions also favor higher EHE frequency. Further analysis reveals that the EOF1 mode is related to the Polar–Eurasian teleconnection pattern (POL), while the EOF2 mode is associated with North Atlantic Oscillation (NAO) and Pacific–Japan/East Asia–Pacific pattern (PJ/EAP). The fitted EHE frequency based on the atmospheric factors (POL, NAO, and PJ/EAP) can explain the interannual variation in the regionally averaged EHE frequency by 33.8%. Furthermore, three anomalous sea surface temperature (SST) patterns over the North Atlantic–Mediterranean Sea region and around the Maritime Continent are associated with the two EHE modes by intensifying the pronounced atmospheric teleconnections. Analysis on the simulation of five models in the Atmospheric Model Intercomparison Project experiment further confirms the impact of the pronounced SST patterns on the POL, NAO and PJ/EAP. In addition, NA EHE frequency experienced a significant interdecadal increase around the mid-1990s, which could be associated with the phase shift of the Atlantic multidecadal oscillation and long-term global warming trend.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn
Save