• Aizawa, T., and H. L. Tanaka, 2016: Axisymmetric structure of the long lasting summer Arctic cyclones. Polar Sci., 10, 192198, https://doi.org/10.1016/j.polar.2016.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and C. M. Bitz, 2014: Characteristics of Arctic sea-ice thickness variability in GCMs. J. Climate, 27, 82448258, https://doi.org/10.1175/JCLI-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, https://doi.org/10.1175/2009JCLI3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2017: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3. National Snow and Ice Data Center Distributed Active Archive Center, accessed 21 February 2020, https://doi.org/10.5067/7Q8HCCWS4I0R.

    • Crossref
    • Export Citation
  • Fearon, M. G., J. D. Doyle, D. R. Ryglicki, P. M. Finocchio, and M. Sprenger, 2020: The role of cyclones in moisture transport into the Arctic. Geophys. Res. Lett., 48, e2020GL090353, https://doi.org/10.1029/2020GL090353.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., J. D. Doyle, D. P. Stern, and M. G. Fearon, 2020: Short-term impacts of Arctic summer cyclones on sea ice extent in the marginal ice zone. Geophys. Res. Lett., 47, e2020GL088338, https://doi.org/10.1029/2020GL088338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019: Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, G. A., and T. Alerstam, 1998: Optimal map projections for analysing long-distance migration routes. J. Avian Biol., 29, 597605, https://doi.org/10.2307/3677180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 5.1. Doc. LA-CC-06-012, 116 pp., http://www.ccpo.odu.edu/~klinck/Reprints/PDF/cicedoc2015.pdf.

  • Japan Meteorological Agency, 2013: JRA-55: Japanese 55-year reanalysis, daily 3-hourly and 6-hourly data. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 1 January 2019, https://doi.org/10.5065/D6HH6H41.

    • Crossref
    • Export Citation
  • King, J., S. Howell, M. Brady, P. Toose, C. Derksen, C. Haas, and J. Beckers, 2020: Local-scale variability of snow density on Arctic sea ice. Cryosphere, 14, 43234339, https://doi.org/10.5194/tc-14-4323-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koyama, T., J. Stroeve, J. Cassano, and A. Crawford, 2017: Sea ice loss and Arctic cyclone activity from 1979 to 2014. J. Climate, 30, 47354754, https://doi.org/10.1175/JCLI-D-16-0542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriegsmann, A., and B. Brümmer, 2014: Cyclone impact on sea ice in the central Arctic Ocean: A statistical study. Cryosphere, 8, 303317, https://doi.org/10.5194/tc-8-303-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-H., and J.-H. Kim, 2019: The role of synoptic cyclones for the formation of Arctic summer circulation patterns as clustered by self-organizing maps. Atmosphere, 10, 474, https://doi.org/10.3390/atmos10080474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and A. J. B. Schweiger, 2020: Cloud structure of the Arctic cyclone. 2020 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A151-0004.

  • Lukovich, J. V., J. C. Stroeve, A. Crawford, L. Hamilton, M. Tsamados, H. Heorton, and F. Massonnet, 2021: Summer extreme cyclone impacts on Arctic sea ice. J. Climate, 34, 48174834, https://doi.org/10.1175/JCLI-D-19-0925.1.

    • Search Google Scholar
    • Export Citation
  • Luo, B., D. Luo, L. Wu, L. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., S. Tietsche, L. Haimberger, T. Tsubouchi, J. Mayer, and H. Zuo, 2019: An improved estimate of the coupled Arctic energy budget. J. Climate, 32, 79157934, https://doi.org/10.1175/JCLI-D-19-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and C. H. Pease, 1982: Cyclone climatology of the Bering Sea and its relation to sea ice extent. Mon. Wea. Rev., 110, 513, https://doi.org/10.1175/1520-0493(1982)110<0005:CCOTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40, 13561361, https://doi.org/10.1002/grl.50349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, L., X. Zhang, J.-H. Kim, K.-H. Cho, B.-M. Kim, Z. Wang, and H. Tang, 2021: Role of intense Arctic storm in accelerating summer sea ice melt: An in situ observational study. Geophys. Res. Lett., 48, e2021GL092714, https://doi.org/10.1029/2021GL092714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponce de León, S., and J. H. Bettencourt, 2021: Composite analysis of North Atlantic extra-tropical cyclone waves from satellite altimetry observations. Adv. Space Res., 68, 762772, https://doi.org/10.1016/j.asr.2019.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rae, J. G. L., A. D. Todd, E. W. Blockley, and J. K. Ridley, 2017: How much should we believe correlations between Arctic cyclones and sea ice extent? Cryosphere, 11, 30233034, https://doi.org/10.5194/tc-11-3023-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiber, E. A. P., and M. C. Serreze, 2020: Impacts of synoptic-scale cyclones on Arctic sea-ice concentration: A systematic analysis. Ann. Glaciol., 61, 139153, https://doi.org/10.1017/aog.2020.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, and K. Keay, 2011: Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res., 116, D15105, https://doi.org/10.1029/2011JD015847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., T. J. Bracegirdle, and I. Simmonds, 2018: Polar climate change as manifest in atmospheric circulation. Curr. Climate Change Rep., 4, 383395, https://doi.org/10.1007/s40641-018-0111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, A., X. Zhang, A. Rinke, W. Dorn, and K. Dethloff, 2019: Arctic intense summer storms and their impacts on sea ice—A regional climate modeling study. Atmosphere, 10, 218, https://doi.org/10.3390/atmos10040218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M., 2009: Northern Hemisphere cyclone locations and characteristics from NCEP/NCAR reanalysis data, version 1. NASA National Snow and Ice Data Center, accessed 11 August 2019, https://doi.org/10.5067/XEPCLZKPAJBK.

    • Crossref
    • Export Citation
  • Serreze, M, and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 10481065, https://doi.org/10.1175/2007JCLI1810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, https://doi.org/10.1029/2009GL039810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259.

  • Simmonds, I., and I. Rudeva, 2014: A comparison of tracking methods for extreme cyclones in the Arctic basin. Tellus, 66A, 25252, https://doi.org/10.3402/tellusa.v66.25252.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. D. Doyle, N. P. Barton, P. M. Finocchio, W. A. Komaromi, and E. J. Metzger, 2020: The impact of an intense cyclone on short-term sea ice loss in a fully coupled atmosphere-ocean-ice model. Geophys. Res. Lett., 47, e2019GL085580, https://doi.org/10.1029/2019GL085580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and I. G. Rigor, 2013: Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett., 40, 48644868, https://doi.org/10.1002/grl.50928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87, 58455852, https://doi.org/10.1029/JC087iC08p05845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vessey, A. F., K. I. Hodges, L. C. Shaffrey, and J. J. Day, 2020: An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dyn., 54, 27772795, https://doi.org/10.1007/s00382-020-05142-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Walsh, S. Szymborski, and M. Peng, 2020: Rapid Arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies. J. Climate, 33, 15971617, https://doi.org/10.1175/JCLI-D-19-0528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony, 1999: Snow depth on Arctic sea ice. J. Climate, 12, 18141829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, M. A., C. Parker, L. Boisvert, and R. Kwok, 2019: The role of cyclone activity in snow accumulation on Arctic sea ice. Nat. Commun., 10, 5285, https://doi.org/10.1038/s41467-019-13299-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagami, A., M. Matsueda, and H. L. Tanaka, 2017: Extreme Arctic cyclone in August 2016. Atmos. Sci. Lett., 18, 307314, https://doi.org/10.1002/asl.757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 105 105 105
Full Text Views 47 47 47
PDF Downloads 71 71 71

A Cyclone-Centered Perspective on the Drivers of Asymmetric Patterns in the Atmosphere and Sea Ice during Arctic Cyclones

View More View Less
  • 1 a University of Washington, Seattle, Washington
  • | 2 b University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Arctic cyclones are an extremely common, year-round phenomenon, with substantial influence on sea ice. However, few studies address the heterogeneity in the spatial patterns in the atmosphere and sea ice during Arctic cyclones. We investigate these spatial patterns by compositing on cyclones from 1985 to 2016 using a novel, cyclone-centered approach that reveals conditions as functions of bearing and distance from cyclone centers. An axisymmetric, cold-core model for the structure of Arctic cyclones has previously been proposed; however, we show that the structure of Arctic cyclones is comparable to those in the midlatitudes, with cyclonic surface winds, a warm, moist sector to the east of cyclones and a cold, dry sector to the west. There is no consensus on the impact of Arctic cyclones on sea ice, as some studies have shown that Arctic cyclones lead to sea ice growth and others to sea ice loss. Instead, we find that sea ice decreases to the east of Arctic cyclones and increases to the west, with the greatest changes occurring in the marginal ice zone. Using a sea ice model forced with prescribed atmospheric reanalysis, we reveal the relative importance of the dynamic and thermodynamic forcing of Arctic cyclones on sea ice. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude; however, dynamic processes dominate the response of sea ice thickness and are the primary driver of the east–west difference in the sea ice response to cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robin Clancy, rclancy@uw.edu

Abstract

Arctic cyclones are an extremely common, year-round phenomenon, with substantial influence on sea ice. However, few studies address the heterogeneity in the spatial patterns in the atmosphere and sea ice during Arctic cyclones. We investigate these spatial patterns by compositing on cyclones from 1985 to 2016 using a novel, cyclone-centered approach that reveals conditions as functions of bearing and distance from cyclone centers. An axisymmetric, cold-core model for the structure of Arctic cyclones has previously been proposed; however, we show that the structure of Arctic cyclones is comparable to those in the midlatitudes, with cyclonic surface winds, a warm, moist sector to the east of cyclones and a cold, dry sector to the west. There is no consensus on the impact of Arctic cyclones on sea ice, as some studies have shown that Arctic cyclones lead to sea ice growth and others to sea ice loss. Instead, we find that sea ice decreases to the east of Arctic cyclones and increases to the west, with the greatest changes occurring in the marginal ice zone. Using a sea ice model forced with prescribed atmospheric reanalysis, we reveal the relative importance of the dynamic and thermodynamic forcing of Arctic cyclones on sea ice. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude; however, dynamic processes dominate the response of sea ice thickness and are the primary driver of the east–west difference in the sea ice response to cyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robin Clancy, rclancy@uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.90 MB)
Save