• Ahmed, F., C. Schumacher, Z. Feng, and S. Hagos, 2016: A retrieval of tropical latent heating using the 3D structure of precipitation features. J. Appl. Meteor. Climatol., 55, 19651982, https://doi.org/10.1175/JAMC-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and S. Kumar, 2015: Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J. Geophys. Res. Atmos., 120, 17101722, https://doi.org/10.1002/2014JD022552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., 2015: A review of recent progress on Tibet’s role in the South Asian monsoon. CLIVAR Exchanges, No. 19, International CLIVAR Project Office, Southampton, United Kingdom, 23–27.

  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., J. L. Anderson, and X. Chen, 2020a: An efficient bi-Gaussian ensemble Kalman filter for satellite infrared radiance data assimilation. Mon. Wea. Rev., 148, 50875104, https://doi.org/10.1175/MWR-D-20-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., F. Zhang, X. Chen, and L. R. Leung, 2020b: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 32033224, https://doi.org/10.1175/MWR-D-19-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019a: Relative roles of preconditioning moistening and global circumnavigating mode on the MJO convective initiation during DYNAMO. Geophys. Res. Lett., 46, 10791087, https://doi.org/10.1029/2018GL080987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019b: Development of a convection-permitting air-sea-coupled ensemble data assimilation system for tropical cyclone prediction. J. Adv. Model. Earth Syst., 11, 34743496, https://doi.org/10.1029/2019MS001795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018a: Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution. Atmos. Chem. Phys., 18, 10031022, https://doi.org/10.5194/acp-18-1003-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, and F. Zhang, 2018b: Atmospheric overturning across multiple scales of an MJO event during the CINDY/DYNAMO campaign. J. Atmos. Sci., 75, 381399, https://doi.org/10.1175/JAS-D-17-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, L. R. Leung, and F. Zhang, 2018c: Multiscale atmospheric overturning of the Indian summer monsoon as seen through isentropic analysis. J. Atmos. Sci., 75, 30113030, https://doi.org/10.1175/JAS-D-18-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, L. R. Leung, and F. Zhang, 2020: Significant contribution of mesoscale overturning to tropical mass and energy transport revealed by the ERA5 reanalysis. Geophys. Res. Lett., 47, e2019GL085333, https://doi.org/10.1029/2019GL085333.

    • Search Google Scholar
    • Export Citation
  • Chen, X., R. G. Nystrom, C. A. Davis, and C. Zarzycki, 2021: Dynamical structures of cross-domain forecast error covariance of a simulated tropical cyclone in a convection-permitting coupled atmosphere–ocean model. Mon. Wea. Rev., 149, 4163, https://doi.org/10.1175/MWR-D-20-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., O. Pauluis, and F. Zhang, 2017: Isentropic analysis on the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 41774197, https://doi.org/10.1175/JAS-D-17-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., F. Song, K. Sakaguchi, and L. R. Leung, 2021a: Evaluation of mesoscale convective systems in climate simulations: Methodological development and results from MPAS-CAM over the United States. J. Climate, 34, 26112633, https://doi.org/10.1175/JCLI-D-20-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, N. Liu, J. Wang, R. A. Houze Jr., and J. Li, 2021b: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and R. S. Ajayamohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, https://doi.org/10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., T. Zhou, M. Wang, and Y. Qian, 2015: Impact of cloud radiative heating on East Asian summer monsoon circulation. Environ. Res. Lett., 10, 074014, https://doi.org/10.1088/1748-9326/10/7/074014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K. S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden–Julian oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 12 05212 068, https://doi.org/10.1002/2014JD022143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, B., and Coauthors, 2019: Cloud-resolving model intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. J. Geophys. Res. Atmos., 124, 10901117, https://doi.org/10.1029/2018JD029596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr, K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, H., L. R. Leung, and Z. Feng, 2020: Observed warm-season characteristics of MCS and non-MCS rainfall and their recent changes in the central United States. Geophys. Res. Lett., 47, e2019GL086783, https://doi.org/10.1029/2019GL086783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G., E. Stocker, D. Bolvin, E. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation l3 half hourly 0.1 degree × 0.1 degree V06. NASA Goddard Earth Science Data and Information Services Center, accessed 1 June 2020, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

    • Crossref
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. E. Back, 2015: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 41484166, https://doi.org/10.1175/JAS-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 half hourly 4 km global (60S–60N) merged IR V1. NASA Goddard Earth Science Data and Information Services Center, accessed 1 June 2020, https://doi.org/10.5067/P4HZB9N27EKU.

    • Crossref
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev., 112, 15901601, https://doi.org/10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., and G. Bhat, 2017: Vertical structure of orographic precipitating clouds observed over South Asia during summer monsoon season. J. Earth Syst. Sci., 126, 114, https://doi.org/10.1007/s12040-017-0897-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., and G. L. Stephens, 2006: An enhanced convection-wind-evaporation feedback in a superparameterization GCM (SP-GCM) depiction of the Asian summer monsoon. Geophys. Res. Lett., 33, L06707, https://doi.org/10.1029/2005GL025060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, D., A. H. Sobel, Z. Kuang, M. S. Singh, and J. Nie, 2019: A moist entropy budget view of the South Asian summer monsoon onset. Geophys. Res. Lett., 46, 44764484, https://doi.org/10.1029/2019GL082089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606, https://doi.org/10.1175/1520-0450(1999)038<0596:TCTTRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., O. M. Pauluis, A. M. Fridlind, and A. S. Ackerman, 2015: Properties of a mesoscale convective system in the context of an isentropic analysis. J. Atmos. Sci., 72, 19451962, https://doi.org/10.1175/JAS-D-14-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., O. M. Pauluis, and F. Zhang, 2016: Isentropic analysis of a simulated hurricane. J. Atmos. Sci., 73, 18571870, https://doi.org/10.1175/JAS-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, https://doi.org/10.1175/2010JCLI3505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., 2016: The mean air flow as Lagrangian dynamics approximation and its application to moist convection. J. Atmos. Sci., 73, 44074425, https://doi.org/10.1175/JAS-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci., 70, 36733688, https://doi.org/10.1175/JAS-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, https://doi.org/10.1126/science.1159649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., M. R. Ramesh Kumar, S. Mathew, and R. Venkatesan, 2018: How accurate are satellite estimates of precipitation over the north Indian Ocean? Theor. Appl. Climatol., 134, 467475, https://doi.org/10.1007/s00704-017-2287-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A., R. Rasmussen, D. Wang, and S. Giangrande, 2021: Sensitivity of organized convective storms to model grid spacing in current and future climates. Philos. Trans. Roy. Soc., A379, 20190546, https://doi.org/10.1098/rsta.2019.0546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, https://doi.org/10.1175/2010JHM1289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabin, T. P., and O. M. Pauluis, 2020: The South Asian monsoon circulation in moist isentropic coordinates. J. Climate, 33, 52535270, https://doi.org/10.1175/JCLI-D-19-0637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saikranthi, K., T. Narayana Rao, B. Radhakrishna, and S. V. B. Rao, 2014: Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR. J. Geophys. Res. Atmos., 119, 84338449, https://doi.org/10.1002/2014JD021774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003a: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, https://doi.org/10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003b: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., S. N. Stevenson, and C. R. Williams, 2015: Vertical motions of the tropical convective cloud spectrum over Darwin, Australia. Quart. J. Roy. Meteor. Soc., 141, 22772288, https://doi.org/10.1002/qj.2520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2021: Convection permitting regional climate change simulations for understanding future climate and informing decision making in Africa. Bull. Amer. Meteor. Soc., 102, E1206E1223, https://doi.org/10.1175/BAMS-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, https://doi.org/10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Slawinska, J., O. Pauluis, A. J. Majda, and W. W. Grabowski, 2016: Multiscale interactions in an idealized Walker cell: Analysis with isentropic streamfunctions. J. Atmos. Sci., 73, 11871203, https://doi.org/10.1175/JAS-D-15-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019: Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains. J. Climate, 32, 67496767, https://doi.org/10.1175/JCLI-D-18-0839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: Causes: Attribution of surface radiation biases in NWP and climate models near the U.S. southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014: Evaluation of cloud–resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze, 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C., C. Liu, and E. Zipser, 2013: A climatology of tropical congestus using CloudSat. J. Geophys. Res. Atmos., 118, 64786492, https://doi.org/10.1002/jgrd.50455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. X., B. Wang, H. Cheng, J. Fasullo, Z. Guo, T. Kiefer, and Z. Liu, 2017: The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci. Rev., 174, 84121, https://doi.org/10.1016/j.earscirev.2017.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., J. Lu, and O. Pauluis, 2019: Weakening of upward mass but intensification of upward energy transport in a warming climate. Geophys. Res. Lett., 46, 16721680, https://doi.org/10.1029/2018GL081399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2012: Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett., 39, L07802, https://doi.org/10.1029/2012GL051242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1981: Structure of an Indian summer monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59, 336354, https://doi.org/10.2151/jmsj1965.59.3_336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., C. D. Hoyos, and P. J. Webster, 2010: Spatial and temporal distribution of latent heating in the South Asian monsoon region. J. Climate, 23, 20102029, https://doi.org/10.1175/2009JCLI3026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 127 127 127
Full Text Views 62 62 62
PDF Downloads 59 59 59

Crucial Role of Mesoscale Convective Systems in the Vertical Mass, Water, and Energy Transports of the South Asian Summer Monsoon

View More View Less
  • 1 a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 b Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania
  • | 3 c Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Convective vertical transport is critical in the monsoonal overturning, but the relative roles of different convective systems are not well understood. This study used a cloud classification and tracking technique to decompose a convection-permitting simulation of the South Asian summer monsoon (SASM) into subregimes of mesoscale convective systems (MCSs), non-MCS deep convection (non-MCS), congestus, and shallow convection/clear sky. Isentropic analysis is adopted to quantify the contributions of different convective systems to the total SASM vertical mass, water, and energy transports. The results underscore the crucial roles of MCSs in the SASM vertical transports. Compared to non-MCSs, the total mass and energy transports by MCSs are at least 1.5 times stronger throughout the troposphere, with a larger contributing fraction from convective updrafts compared to upward motion in stratiform regions. Occurrence frequency of non-MCSs is around 40 times higher than that of MCSs. However, per instantaneous convection features, the vertical transports and net moist static energy (MSE) exported by MCSs are about 70–100 and 58 times stronger than that of non-MCSs. While these differences are dominantly contributed by differences in the per-feature MCS and non-MCS area coverage, MCSs also show stronger transport intensities than non-MCSs over both ocean and land. Oceanic MCSs and non-MCSs show more obvious top-heavy structures than their inland counterparts, which are closely related to the widespread stratiform over ocean. Compared to the monsoon break phase, MCSs occur more frequently (~1.6 times) but their vertical transport intensity slightly weakens (by ~10%) during the active phases. These results are useful for understanding the SASM and advancing the energetic framework.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu

Abstract

Convective vertical transport is critical in the monsoonal overturning, but the relative roles of different convective systems are not well understood. This study used a cloud classification and tracking technique to decompose a convection-permitting simulation of the South Asian summer monsoon (SASM) into subregimes of mesoscale convective systems (MCSs), non-MCS deep convection (non-MCS), congestus, and shallow convection/clear sky. Isentropic analysis is adopted to quantify the contributions of different convective systems to the total SASM vertical mass, water, and energy transports. The results underscore the crucial roles of MCSs in the SASM vertical transports. Compared to non-MCSs, the total mass and energy transports by MCSs are at least 1.5 times stronger throughout the troposphere, with a larger contributing fraction from convective updrafts compared to upward motion in stratiform regions. Occurrence frequency of non-MCSs is around 40 times higher than that of MCSs. However, per instantaneous convection features, the vertical transports and net moist static energy (MSE) exported by MCSs are about 70–100 and 58 times stronger than that of non-MCSs. While these differences are dominantly contributed by differences in the per-feature MCS and non-MCS area coverage, MCSs also show stronger transport intensities than non-MCSs over both ocean and land. Oceanic MCSs and non-MCSs show more obvious top-heavy structures than their inland counterparts, which are closely related to the widespread stratiform over ocean. Compared to the monsoon break phase, MCSs occur more frequently (~1.6 times) but their vertical transport intensity slightly weakens (by ~10%) during the active phases. These results are useful for understanding the SASM and advancing the energetic framework.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu
Save