• Baran, A. J., and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Quart. J. Roy. Meteor. Soc., 133, 18991912, https://doi.org/10.1002/qj.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, https://doi.org/10.1029/2011RG000363.

  • Cairns, B., 1995: Diurnal variations of cloud from ISCCP data. Atmos. Res., 37, 135146, https://doi.org/10.1016/0169-8095(94)00074-N.

  • Cao, C.-Y., and A. K. Heidinger, 2002: Inter-comparison of the longwave infrared channels of MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit intersections. Proc. SPIE, 4814, 306, https://doi.org/10.1117/12.451690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y.-C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhary, J., L. D. Travis, and A. A. Lacis, 1995: Incorporation of a rough ocean surface and semi-infinite water body in multiple scattering computations of polarized light in an atmosphere-ocean system. Proc. SPIE, 2311, 5870, https://doi.org/10.1117/12.198585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, https://doi.org/10.1175/JCLI-D-12-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., J. B. Roberts, and A. S. Bogdanoff, 2012: The SeaFlux Turbulent Flux dataset version 1.0 documentation. SeaFlux Project, 5 pp., https://seaflux.org/seaflux_data/DOCUMENTATION/SeaFluxDocumentationV12.pdf.

  • Coopman, Q., J. Riedi, S. Zeng, and T. J. Garrett, 2020: Space-based analysis of the cloud thermodynamic transition for varying microphysical and meteorological regimes. Geophys. Res. Lett., 47, e2020GL087122, https://doi.org/10.1029/2020GL087122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., S. K. Gupta, W. F. Staylor, N. A. Ritchey, and A. C. Wilber, 1992: Seasonal variation of surface radiation budget derived from the ISCCP C1 data. J. Geophys. Res., 97, 15 74115 760, https://doi.org/10.1029/92JD00675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., and G. Seze, 1998: Significant changes between the ISCCP C and D cloud climatologies. Geophys. Res. Lett., 25, 41934196, https://doi.org/10.1029/1998GL900081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, F., 1993: Global cloud cover and cloud water path from ISCCP C2 data. Int. J. Climatol., 13, 581605, https://doi.org/10.1002/joc.3370130602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 14, L04701, https://doi.org/10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiance data. J. Climate, 3, 11291152, https://doi.org/10.1175/1520-0442(1990)003<1129:BODCCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710, https://doi.org/10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gushchina, D., and B. DeWitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 36693681, https://doi.org/10.1175/MWR-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelson, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of southern ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 50615080, https://doi.org/10.1175/2011JCLI4052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., W. C. Straka, C. C. Molling, J. T. Sullivan, and X. Wu, 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, https://doi.org/10.1080/01431161.2010.496472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inamdar, A. K., and K. R. Knapp, 2015: Intercomparison of independent calibration techniques applied to the visible channel of the ISCCP B1 data. J. Atmos. Oceanic Technol., 32, 12251240, https://doi.org/10.1175/JTECH-D-14-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, B. J. McCarty, 2002: The annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, https://doi.org/10.1029/2000JC000423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identifications of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, https://doi.org/10.1029/2003GL018367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21, 43484364, https://doi.org/10.1175/2008JCLI2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., M. S. Singh, and L. Jungandreas, 2019: Radiative convective equilibrium and organized convection: An observational perspective. J. Geophys. Res. Atmos., 124, 54185430, https://doi.org/10.1029/2018JD030092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y., and W. B. Rossow, 1997: Detection of cirrus overlapping low-level clouds. J. Geophys. Res., 102, 17271737, https://doi.org/10.1029/96JD02996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, K-G., and A. Devasthale, 2018: Inter-comparison and evaluation of the four longest satellite-derived cloud climate data records: CLARA-A2, ESA Cloud CCI V3, ISCCP-HGM, and PATMOS-x. Remote Sens., 10, 1567, https://doi.org/10.3390/rs10101567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2013: MAC-v1: A new aerosol climatology for climate studies. J. Adv. Model. Earth Syst., 5, 704740, https://doi.org/10.1002/jame.20035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., 2008a: Calibration assessment of ISCCP geostationary infrared observations using HIRS. J. Atmos. Oceanic Technol., 25, 143195, https://doi.org/10.1175/2007JTECHA910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., 2008b: Scientific data stewardship of International Satellite Cloud Climatology Project B1 global geostationary observations. J. Appl. Remote Sens., 2, 023548, https://doi.org/10.1117/1.3043461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., A. H. Young, H. Semunegus, A. K. Inamdar, and W. Hankins, 2021: Adjusting ISCCP cloud detection to increase consistency of cloud amount and reduce artifacts. J. Atmos. Oceanic Technol., 35, 155165, https://doi.org/10.1175/JTECH-D-20-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123, 19842006, https://doi.org/10.1175/1520-0493(1995)123<1984:ASVOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., and W. B. Rossow, 1996: Seasonal variation of liquid and ice water path in nonprecipitating clouds over oceans. J. Climate, 9, 28902902, https://doi.org/10.1175/1520-0442(1996)009<2890:SVOLAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, S. A. Ackerman, G. G. Mace, and Q. Zhang, 2012: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sens. Environ., 124, 159173, https://doi.org/10.1016/j.rse.2012.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., T. J. Thorsen, J. R. Norris, H. Wang, and W. Su, 2018: Changes in Earth’s energy budget during and after the “pause” in global warming: An observational perspective. Climate, 6, 62, https://doi.org/10.3390/cli6030062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, https://doi.org/10.1175/3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch, 2002: Did the eruption of the Mt. Pinatubo volcano affect cirrus properties? J. Climate, 15, 28062820, https://doi.org/10.1175/1520-0442(2002)015<2806:DTEOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., R. C. Anderson, W. B. Rossow, and H. Takahashi, 2017: Tropical cloud and precipitation regimes as seen from near-simultaneous TRMM, CloudSat and CALIPSO observations and comparison with ISCCP. J. Geophys. Res. Atmos., 122, 5988–6003, https://doi.org/10.1002/2017JD026569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, MODIS, and ISCCP. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2011: The interaction between deep convection and easterly waves tropical North Africa: A weather state perspective. J. Climate, 24, 42764294, https://doi.org/10.1175/2011JCLI3900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., and W. B. Rossow, 2018: The interaction between cloud regimes and easterly wave activity over Africa: Convective transitions and mechanisms. Mon. Wea. Rev., 146, 19451961, https://doi.org/10.1175/MWR-D-17-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molling, C. C., A. K. Heidinger, W. C. Straka, and X. Wu, 2010: Calibrations for AVHRR channels 1 and 2: Review and path towards consensus. Int. J. Remote Sens., 31, 64196540, https://doi.org/10.1080/01431161.2010.496473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naszaryan, H., M. P. McCormick, and W. P. Menzel, 2008: Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res., 113, D16211, https://doi.org/10.1029/2007JD009481.

    • Crossref
    • Export Citation
  • Oreopoulos, L., and W. B. Rossow, 2011: The cloud radiative effect of ISCCP weather states. J. Geophys. Res., 116, D12202, https://doi.org/10/1029/2010jd015472.

    • Crossref
    • Export Citation
  • Paek, H., J.-Y. Yu, and C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Polly, J., and W. B. Rossow, 2016: Distribution of midlatitude cyclone attributes based on the MCMS database. J. Climate, 29, 6483–6507, https://doi.org/10.1175/JCLI-D-15-0857.1.

    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. J. Reeder, 2009a: Objective classification of tropical mesoscale convective systems. J. Climate, 22, 57975808, https://doi.org/10.1175/2009JCLI2777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. J. Reeder, 2009b: Regimes of the north Australian wet season. J. Climate, 22, 66996715, https://doi.org/10.1175/2009JCLI3057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschke, E., S. Kinne, W. B. Rossow, P. W. Stackhouse, and M. Wild, 2016: Comparison of radiative energy flows in observational datasets and climate modeling. J. Appl. Meteor. Climatol., 55, 93117, https://doi.org/10.1175/JAMC-D-14-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riedi, J., and Coauthors, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865, https://doi.org/10.5194/acp-10-11851-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., 2017: ISCCP Cloud Properties—H-Series Product. NOAA Climate Data Record Program Doc. CDRP-ATDB-0.872, 301 pp., http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf.

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and L. C. Garder, 1993a: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 23412369, https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and L. C. Garder, 1993b: Validation of ISCCP cloud detections. J. Climate, 6, 23702393, https://doi.org/10.1175/1520-0442(1993)006<2370:VOICD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and B. Cairns, 1995: Monitoring changes of clouds. Climatic Change, 31, 305347, https://doi.org/10.1007/BF01095151.

  • Rossow, W. B., and Y.-C. Zhang, 1995: Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP datasets, Part II: Validation and first results. J. Geophys. Res., 100, 11671197, https://doi.org/10.1029/94JD02746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and J. Ferrier, 2015: Evaluation of long-term calibrations of the AVHRR visible radiances. J. Atmos. Oceanic Technol., 32, 744766, https://doi.org/10.1175/JTECH-D-14-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and J. J. Bates, 2019: Building an accessible, integrated Earth observing and information system: The International Satellite Cloud Climatology Project as a pathfinder. Bull. Amer. Meteor. Soc., 100, 2423–2431, https://doi.org/10.1175/BAMS-D-19-0060.1.

    • Crossref
    • Export Citation
  • Rossow, W. B., and Coauthors, 1985: ISCCP cloud algorithm intercomparison. J. Climate Appl. Meteor., 24, 877903, https://doi.org/10.1175/1520-0450(1985)024<0887:ICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6, 23942418, https://doi.org/10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Y.-C. Zhang, and J.-H. Wang, 2005a: A statistical model of cloud vertical structure based on reconciling cloud layer amounts inferred from satellites and radiosonde humidity profiles. J. Climate, 18, 35873605, https://doi.org/10.1175/JCLI3479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005b: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, https://doi.org/10.1029/2005GL024584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466, https://doi.org/10.1175/JCLI-D-11-00725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Y.-C. Zhang, and G. Tselioudis, 2016: Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, 10591065, https://doi.org/10.1175/JCLI-D-15-0760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779784, https://doi.org/10.1175/1520-0477-64.7.779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1985: ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66, 14981505, https://doi.org/10.1175/1520-0477(1985)066<1498:IGRDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2018: Regional intensification of tropical hydrological cycle during ENSO. Geophys. Res. Lett., 45, 43614370, https://doi.org/10.1029/2018GL077598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, https://doi.org/10.1175/2010JCLI3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., W. B. Rossow, F. Cheruy, A. Chedin, and N. A. Scott, 1999: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters. J. Climate, 12, 21892213, https://doi.org/10.1175/1520-0442(1999)012<2189:CASBSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., W. B. Rossow, and S. Kinne, 2012: Assessment of global cloud datasets from satellites: A project of the World Climate Research Programme Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel. WCRP Rep. 23/2012, 176 pp., https://www.wcrp-climate.org/documents/GEWEX_Cloud_Assessment_2012.pdf.

  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Y. Huang, 2018: An examination of convective moistening of the lower stratosphere using satellite data. Earth Space Sci., 2, 320330, https://doi.org/10.1002/2015EA000115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and C. Jakob, 2013: A three-hourly dataset of the state of tropical convection based on cloud regimes. Geophys. Res. Lett., 40, 14151419, https://doi.org/10.1002/grl.50294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, W. B. Rossow, and G. Tselioudis, 2015: The role of organized deep convection in explaining observed tropical rainfall changes. Nature, 519, 451454, https://doi.org/10.1038/nature14339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, and E. J. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33, L20704, https://doi.org/10.1029/2006GL027752.

    • Crossref
    • Export Citation
  • Tromeur, E., and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the Madden–Julian oscillation. J. Climate, 23, 18371853, https://doi.org/10.1175/2009JCLI3240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y.-C. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13, 312327, https://doi.org/10.1175/1520-0442(2000)013<0312:CARVAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., E. Tromeur, W. B. Rossow and C. S. Zerefos, 2010: Decadal changes in tropical convection and possible effects on stratospheric water vapor. Geophys. Res. Lett., 37, L14806, https://doi.org/10.1029/2010GL044092.

    • Crossref
    • Export Citation
  • Tselioudis, G., W. B. Rossow, Y.-C. Zhang, and D. Konsta, 2013: Global weather states and their properties from passive and active satellite cloud retrievals. J. Climate, 26, 77347746, https://doi.org/10.1175/JCLI-D-13-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., B. R. Lipat, D. Konsta, K. M. Grise, and L. M. Polvani, 2016: Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects. Geophys. Res. Lett., 43, 45944601, https://doi.org/10.1002/2016GL068242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. B. Rossow, C. Jakob, J. Remillard, D. Tropf, and Y.-C. Zhang, 2021: Evaluation of clouds, radiation, and precipitation in CMIP6 models using global weather states derived from ISCCP-H cloud property data. J. Climate, 34, 7311–7324, https://doi.org/10.1175/JCLI-D-21-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinden, K. L., D. W. J. Thompson, and G. L. Stephens, 2011: The three-dimensional distribution of clouds over the southern hemisphere high latitudes. J. Climate, 24, 57995811, https://doi.org/10.1175/2011JCLI3922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., W. B. Rossow, and Y.-C. Zhang, 2000: Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J. Climate, 13, 30413056, https://doi.org/10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, and K. A. Powell, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worku, L. Y., A. Mekonnen, and C. J. Schreck, 2019: Diurnal cycle of rainfall and convection over Maritime Continent using TRMM and ISCCP. Int. J. Climatol., 39, 51915200, https://doi.org/10.1002/joc.6121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worku, L. Y., A. Mekonnen, and C. J. Schreck, 2020: The impact of MJO, Kelvin, equatorial Rossby waves on the diurnal cycle over the Maritime Continent. Atmosphere, 11, 711, https://doi.org/10.3390/atmos11070711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A. H., K. R. Knapp, A. Inamdar, W. Hankins, and W. B. Rossow, 2018: The International Satellite Cloud Climatology Project H-Series climate data record product. Earth Syst. Sci. Data, 10, 583593, https://doi.org/10.5194/essd-10-583-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J. Geophys. Res., 112, D13106, https://doi.org/10.1029/2006JD007654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Three evolution patterns of central-Pacific El Niño. Geophys. Res. Lett., 37, L08706, https://doi.org/10.1029/2010GL042810.

    • Crossref
    • Export Citation
  • Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of central Pacific El Niño to Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., Z. Guo, L. Zhang, T. Zhou, and T. Hayasaya, 2020: Cloud characteristics and radiative forcing in the global land monsoon region from multisource satellite data sets. Earth Space Sci., 7, e2019ea001027, https://doi.org/10.1029/2019EA001027.

    • Crossref
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variation in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021.

    • Crossref
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP datasets. Part I: Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165, https://doi.org/10.1029/94JD02747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, M. I. Mishchenko, and V. Oinas, 2004: Calculation of radiative fluxes from the surface to top-of-atmosphere based on ISCCP and other global datasets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457.

    • Crossref
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, P. Stackhouse, A. Romanou, and B. A. Wielicki, 2007: Decadal variations of global energy and ocean heat budget and meridional energy transports inferred from recent global data sets. J. Geophys. Res., 112, D22101, https://doi.org/10.1029/2007JD008435.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 374 374 29
Full Text Views 147 147 18
PDF Downloads 189 189 17

International Satellite Cloud Climatology Project: Extending the Record

View More View Less
  • 1 a Franklin, New York
  • | 2 b NOAA National Centers for Environmental Information, Asheville, North Carolina
  • | 3 c NOAA Center for Satellite Applications and Research, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

ISCCP continues to quantify the global distribution and diurnal-to-interannual variations of cloud properties in a revised version. This paper summarizes assessments of the previous version, describes refinements of the analysis and enhanced features of the product design, discusses the few notable changes in the results, and illustrates the long-term variations of global mean cloud properties and differing high cloud changes associated with ENSO. The new product design includes a global, pixel-level product on a 0.1° grid, all other gridded products at 1.0°-equivalent equal area, separate satellite products with ancillary data for regional studies, more detailed, embedded quality information, and all gridded products in netCDF format. All the data products including all input data, expanded documentation, the processing code, and an operations guide are available online. Notable changes are 1) a lowered ice–liquid temperature threshold, 2) a treatment of the radiative effects of aerosols and surface temperature inversions, 3) refined specification of the assumed cloud microphysics, and 4) interpolation of the main daytime cloud information overnight. The changes very slightly increase the global monthly mean cloud amount with a little more high cloud and a little less middle and low cloud. Over the whole period, total cloud amount slowly decreases caused by decreases in cumulus/altocumulus; consequently, average cloud-top temperature and optical thickness have increased. The diurnal and seasonal cloud variations are very similar to earlier versions. Analysis of the whole record shows that high cloud variations, but not low clouds, exhibit different patterns in different ENSO events.

Significance Statement

This paper reports on the evolution of the research goals and satellite cloud data products produced by ISCCP, a long-term international project, which is now fully operational. The growing length of record with 10-km and 3-h sampling makes possible studies of cloud variations from diurnal-to-weather scale (cloud process scale) to climate variation scale. In particular the length of record includes many examples of ENSO and is beginning to encompass the slower modes of ocean variation, allowing studies of the role of cloud feedbacks in coupling the atmosphere and ocean circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth R. Knapp, ken.knapp@noaa.gov

Abstract

ISCCP continues to quantify the global distribution and diurnal-to-interannual variations of cloud properties in a revised version. This paper summarizes assessments of the previous version, describes refinements of the analysis and enhanced features of the product design, discusses the few notable changes in the results, and illustrates the long-term variations of global mean cloud properties and differing high cloud changes associated with ENSO. The new product design includes a global, pixel-level product on a 0.1° grid, all other gridded products at 1.0°-equivalent equal area, separate satellite products with ancillary data for regional studies, more detailed, embedded quality information, and all gridded products in netCDF format. All the data products including all input data, expanded documentation, the processing code, and an operations guide are available online. Notable changes are 1) a lowered ice–liquid temperature threshold, 2) a treatment of the radiative effects of aerosols and surface temperature inversions, 3) refined specification of the assumed cloud microphysics, and 4) interpolation of the main daytime cloud information overnight. The changes very slightly increase the global monthly mean cloud amount with a little more high cloud and a little less middle and low cloud. Over the whole period, total cloud amount slowly decreases caused by decreases in cumulus/altocumulus; consequently, average cloud-top temperature and optical thickness have increased. The diurnal and seasonal cloud variations are very similar to earlier versions. Analysis of the whole record shows that high cloud variations, but not low clouds, exhibit different patterns in different ENSO events.

Significance Statement

This paper reports on the evolution of the research goals and satellite cloud data products produced by ISCCP, a long-term international project, which is now fully operational. The growing length of record with 10-km and 3-h sampling makes possible studies of cloud variations from diurnal-to-weather scale (cloud process scale) to climate variation scale. In particular the length of record includes many examples of ENSO and is beginning to encompass the slower modes of ocean variation, allowing studies of the role of cloud feedbacks in coupling the atmosphere and ocean circulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth R. Knapp, ken.knapp@noaa.gov
Save