• Adames, Á. F., 2017: Precipitation budget of the Madden–Julian oscillation. J. Atmos. Sci., 74, 17991817, https://doi.org/10.1175/JAS-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, https://doi.org/10.1175/JAS-D-13-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and E. D. Maloney, 2021: Moisture mode theory’s contribution to advances in our understanding of the Madden–Julian oscillation and other tropical disturbances. Curr. Climate Change Rep., 7, 7285, https://doi.org/10.1007/s40641-021-00172-4.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., S. W. Powell, F. Ahmed, V. C. Mayta, and J. D. Neelin, 2021: Tropical precipitation evolution in a buoyancy-budget framework. J. Atmos. Sci., 78, 509528, https://doi.org/10.1175/JAS-D-20-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R. Shirooka, 2015: Observation of moisture tendencies related to shallow convection. J. Atmos. Sci., 72, 641659, https://doi.org/10.1175/JAS-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019: Relative roles of preconditioning moistening and global circumnavigating mode on the MJO convective initiation during DYNAMO. Geophys. Res. Lett., 46, 10791087, https://doi.org/10.1029/2018GL080987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, https://doi.org/10.1175/JTECH-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P., K. Straub, and A. Budsock, 2015: Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 141, 15861602, https://doi.org/10.1002/qj.2461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2015: Column-integrated moist static energy budget analysis on various time scales during TOGA COARE. J. Atmos. Sci., 72, 18561871, https://doi.org/10.1175/JAS-D-14-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., Á. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: New diagnoses of vertical velocity profiles in the wavenumber–frequency domain. J. Atmos. Sci., 77, 21392162, https://doi.org/10.1175/JAS-D-19-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-resolving model. J. Atmos. Sci., 73, 22572278, https://doi.org/10.1175/JAS-D-14-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2020: Fifty years of research on the Madden–Julian oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert, and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2003: Equatorial circumnavigation of moisture signal associated with the Madden–Julian oscillation (MJO) during boreal winter. J. Meteor. Soc. Japan, 81, 851869, https://doi.org/10.2151/jmsj.81.851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-I. Lee, D. Kim, S. D. Schubert, D. E. Waliser, and B. Tian, 2014b: Representation of tropical subseasonal variability of precipitation in global reanalyses. Climate Dyn., 43, 517534, https://doi.org/10.1007/s00382-013-1890-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, https://doi.org/10.1175/JCLI-D-13-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 94259443, https://doi.org/10.1175/JCLI-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, https://doi.org/10.1029/2011JD016031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., C. Zhao, P.-C. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 21212135, https://doi.org/10.1175/JCLI-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1997: Mutual adjustment of mass flux and stratification profiles. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., NATO ASI Series, Vol. 505, Springer, 399–411, https://doi.org/10.1007/978-94-015-8828-7_16.

    • Crossref
    • Export Citation
  • Mapes, B. E., and J. T. Bacmeister, 2012: Diagnosis of tropical biases and the MJO from patterns in the MERRA analysis tendency fields. J. Climate, 25, 62026214, https://doi.org/10.1175/JCLI-D-11-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42 (1), 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayta, V. C., G. N. Kiladis, J. Dias, P. L. S. Dias, and M. Gehne, 2021: Convectively coupled Kelvin waves over tropical South America. J. Climate, 34, 65316547, https://doi.org/10.1175/JCLI-D-20-0662.1.

    • Search Google Scholar
    • Export Citation
  • Mei, S., T. Li, and W. Chen, 2015: Three-type MJO initiation processes over the western equatorial Indian Ocean. Adv. Atmos. Sci., 32, 12081216, https://doi.org/10.1007/s00376-015-4201-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and R. A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586597, https://doi.org/10.1175/1520-0469(1996)053<0586:TEAVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., T. Li, and K. Kikuchi, 2015: Moistening processes before the convective initiation of Madden–Julian oscillation events during the CINDY2011/DYNAMO period. Mon. Wea. Rev., 143, 622643, https://doi.org/10.1175/MWR-D-14-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., 2016: Updraft buoyancy within and moistening by cumulonimbi prior to MJO convective onset in a regional model. J. Atmos. Sci., 73, 29132934, https://doi.org/10.1175/JAS-D-15-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., 2017: Successive MJO propagation in MERRA-2 reanalysis. Geophys. Res. Lett., 44, 51785186, https://doi.org/10.1002/2017GL073399.

  • Powell, S. W., and R. A. Houze Jr., 2015: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 47834805, https://doi.org/10.1002/2014JD022961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, https://doi.org/10.1175/2009JAS3059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D., and X. Zeng, 2005: Modeling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320, https://doi.org/10.1256/qj.03.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, P., D. Kim, M.-S. Ahn, D. Kang, and H.-L. Ren, 2021: Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products. J. Climate, 34, 29773001, https://doi.org/10.1175/JCLI-D-20-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, https://doi.org/10.1175/JAS-D-14-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2015: The development of upper-tropospheric wind over the Western Hemisphere in association with MJO convective initiation. J. Atmos. Sci., 72, 31383160, https://doi.org/10.1175/JAS-D-14-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2016: The development of upper-tropospheric geopotential height anomaly in the Western Hemisphere during MJO convective initiations. Quart. J. Roy. Meteor. Soc., 142, 942956, https://doi.org/10.1002/qj.2696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and D. Kim, 2012: The MJO–Kelvin wave transition. Geophys. Res. Lett., 39, 2012GL053380, https://doi.org/10.1029/2012GL053380.

  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takasuka, D., M. Satoh, and S. Yokoi, 2019: Observational evidence of mixed Rossby–gravity waves as a driving force for the MJO convective initiation and propagation. Geophys. Res. Lett., 46, 55465555, https://doi.org/10.1029/2019GL083108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., M. Mu, H.-L. Ren, and J.-X. Fu, 2019: Conditional nonlinear optimal perturbations of moisture triggering primary MJO initiation. Geophys. Res. Lett., 46, 34923501, https://doi.org/10.1029/2018GL081755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B., 2013: Moist static energy and the Madden–Julian oscillation: Understanding initiation, maintenance and propagation through the application of novel diagnostics. Ph.D. thesis, Colorado State University, 134 pp.

  • Wolding, B., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden–Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., 2015: Multireanalysis comparison of variability in column water vapor and its analysis increment associated with the Madden–Julian oscillation. J. Climate, 28, 793808, https://doi.org/10.1175/JCLI-D-14-00465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yong, Y., and J. Mao, 2016: Mechanistic analysis of the suppressed convective anomaly precursor associated with the initiation of primary MJO events over the tropical Indian Ocean. Climate Dyn., 46, 779795, https://doi.org/10.1007/s00382-015-2612-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 145 145 16
Full Text Views 116 116 13
PDF Downloads 132 132 12

The Role of Large-Scale Moistening by Adiabatic Lifting in the Madden–Julian Oscillation Convective Onset

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, Wisconsin
  • | 2 b Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 3 c Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The initiation of the Madden–Julian oscillation over the Indian Ocean is examined through the use of a moisture budget that applies a version of the weak temperature gradient (WTG) approximation that does not neglect dry adiabatic vertical motions. Examination of this budget in ERA-Interim reveals that horizontal moisture advection and vertical advection by dry adiabatic lifting govern the moistening of the troposphere for both primary and successive MJO initiation events. For both types of initiation events, horizontal moisture advection peaks prior to the maximum moisture tendency, while dry adiabatic lifting peaks after the maximum moisture tendency. Once convection initiates, moisture is maintained by anomalous radiative and adiabatic lifting. The dry adiabatic lifting during successive MJO initiation is attributed to the return of the circumnavigating circulation from a previous MJO event, while in primary events the planetary-scale circulation appears to originate over South America. Examination of the same budget with data from the DYNAMO northern sounding array shows that adiabatic lifting contributes significantly to MJO maintenance, with a contribution that is comparable to that of surface heat fluxes. However, results from the DYNAMO data disagree with those from ERA-Interim over the importance of adiabatic lifting to the moistening of the troposphere prior to the onset of convection. In spite of these differences, the results from the two datasets show that small departures from WTG balance in the form of dry adiabatic motions cannot be neglected when considering MJO convective onset.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chelsea E. Snide, snide@wisc.edu

Abstract

The initiation of the Madden–Julian oscillation over the Indian Ocean is examined through the use of a moisture budget that applies a version of the weak temperature gradient (WTG) approximation that does not neglect dry adiabatic vertical motions. Examination of this budget in ERA-Interim reveals that horizontal moisture advection and vertical advection by dry adiabatic lifting govern the moistening of the troposphere for both primary and successive MJO initiation events. For both types of initiation events, horizontal moisture advection peaks prior to the maximum moisture tendency, while dry adiabatic lifting peaks after the maximum moisture tendency. Once convection initiates, moisture is maintained by anomalous radiative and adiabatic lifting. The dry adiabatic lifting during successive MJO initiation is attributed to the return of the circumnavigating circulation from a previous MJO event, while in primary events the planetary-scale circulation appears to originate over South America. Examination of the same budget with data from the DYNAMO northern sounding array shows that adiabatic lifting contributes significantly to MJO maintenance, with a contribution that is comparable to that of surface heat fluxes. However, results from the DYNAMO data disagree with those from ERA-Interim over the importance of adiabatic lifting to the moistening of the troposphere prior to the onset of convection. In spite of these differences, the results from the two datasets show that small departures from WTG balance in the form of dry adiabatic motions cannot be neglected when considering MJO convective onset.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chelsea E. Snide, snide@wisc.edu
Save