• Basso, B., R. A. Martinez-Feria, L. Rill, and J. T. Ritchie, 2021: Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun., 12, 1476, https://doi.org/10.1038/s41467-021-21763-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. van Dijk, D. G. Miralles, R. A. M. de Jeu, L. A. Bruijnzeel, T. R. McVicar, and J. Schellekens, 2013: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resour. Res., 49, 78437863, https://doi.org/10.1002/2013WR013918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., 2010: The global atmospheric water cycle. Environ. Res. Lett., 5, 025202, https://doi.org/10.1088/1748-9326/5/2/025202.

  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181185, https://doi.org/10.1038/ngeo1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, L. T., and Coauthors, 2020: Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun., 11, 4621, https://doi.org/10.1038/s41467-020-18479-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhowmick, M., S. Sahany, and S. K. Mishra, 2019: Projected precipitation changes over the South Asian region for every 0.5°C increase in global warming. Environ. Res. Lett., 14, 054005, https://doi.org/10.1088/1748-9326/ab1271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M., and S. Nigam, 2011: Modeling of regional hydroclimate change over the Indian subcontinent: Impact of the expanding Thar Desert. J. Climate, 24, 30893106, https://doi.org/10.1175/2010JCLI3851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., J. Rajczak, E. M. Fischer, C. C. Raible, M. Rohrer, and C. Schär, 2018: Changing seasonality of moderate and extreme precipitation events in the Alps. Nat. Hazards Earth Syst. Sci., 18, 20472056, https://doi.org/10.5194/nhess-18-2047-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z. Yan, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cascante-Marín, A., C. Trejos, and R. Alvarado, 2017: Association between rainfall seasonality and the flowering of epiphytic plants in a Neotropical montane forest. Biotropica, 49, 912920, https://doi.org/10.1111/btp.12478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., X. Zhang, H. Lu, L. Jin, Y. Du, and F. Chen, 2021: Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades. Int. J. Climatol., 41, 10241038, https://doi.org/10.1002/joc.6727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2019: Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev., 192, 337354, https://doi.org/10.1016/j.earscirev.2019.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., W. Li, X. Jiang, P. Zhai, and Y. Luo, 2021: Detectable intensification of hourly and daily scale precipitation extremes across eastern China. J. Climate, 34, 11851201, https://doi.org/10.1175/JCLI-D-20-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., W. Wang, and J. Fu, 2020: Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep., 10, 830, https://doi.org/10.1038/s41598-020-57910-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C.-W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, https://doi.org/10.1175/JCLI-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., M. G. Donat, and L. V. Alexander, 2021: Changes in observed daily precipitation over global land areas since 1950. J. Climate, 34, 319, https://doi.org/10.1175/JCLI-D-19-0965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corder, G. W., and D. I. Foreman, 2009: Comparing two unrelated samples: The Mann–Whitney U-test. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach, John Wiley and Sons, 57–78.

    • Crossref
    • Export Citation
  • Dai, A., 2021: Hydroclimatic trends during 1950–2018 over global land. Climate Dyn., 56, 40274049, https://doi.org/10.1007/s00382-021-05684-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, K. Ikeda, and A. F. Prein, 2020: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., 55, 343368, https://doi.org/10.1007/s00382-017-3787-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M. K., A. Brookshaw, and S. Ineson, 2014: The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Manage., 1, 524, https://doi.org/10.1016/j.crm.2013.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. A., I. Fung, and W. Liu, 2018: Changing character of rainfall in eastern China, 1951–2007. Proc. Natl. Acad. Sci. USA, 115, 20162021, https://doi.org/10.1073/pnas.1715386115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, H., Y. Chen, X. Shi, W. Li, H. Wang, S. Zhang, and G. Fang, 2014: Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res., 138, 346355, https://doi.org/10.1016/j.atmosres.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, S., N. Yang, M. Li, L. Cheng, Z. Chen, Y. Chen, T. Chen, and X. Liu, 2019: Rainfall seasonality changes and its possible teleconnections with global climate events in China. Climate Dyn., 53, 35293546, https://doi.org/10.1007/s00382-019-04722-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, S., C. Sheng, N. Yang, L. Song, and Q. Huang, 2020: Anthropogenic forcing enhances rainfall seasonality in global land monsoon regions. Environ. Res. Lett., 15, 104057, https://doi.org/10.1088/1748-9326/abafd3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., W. Jiang, B. He, Z. Chen, and K. Jia, 2018: Change in intensity and frequency of extreme precipitation and its possible teleconnection with large-scale climate index over the China from 1960 to 2015. J. Geophys. Res., 123, 20682081, https://doi.org/10.1002/2017JD027078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, X., L. Zheng, X. Zheng, and S.-J. Kao, 2020: Holocene East Asian summer monsoon rainfall variability in Taiwan. Front. Earth Sci., 8, 234, https://doi.org/10.3389/feart.2020.00234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., D. Si, Y. Liu, Z. Wang, Y. Liu, L. Zhao, and Y. Song, 2018: On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chin. J. Atmos. Sci., 42, 533558, https://doi.org/10.3878/j.issn.1006-9895.1712.17261.

    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, J. Lu, and Y. Gao, 2019a: Contributions of extreme and non-extreme precipitation to California precipitation seasonality changes under warming. Geophys. Res. Lett., 46, 13 47013 478, https://doi.org/10.1029/2019GL084225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, J. Lu, and F. Song, 2019b: Mechanisms for an amplified precipitation seasonal cycle in the U.S. West Coast under global warming. J. Climate, 32, 46814698, https://doi.org/10.1175/JCLI-D-19-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., J. Zhai, Y. Zhao, H. Li, Q. Wang, S. Jiang, H. Chang, and Z. Ding, 2020: Teleconnection patterns of precipitation in the Three-River Headwaters region, China. Environ. Res. Lett., 15, 104050, https://doi.org/10.1088/1748-9326/aba8c0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubois, N., and Coauthors, 2014: Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat. Geosci., 7, 513517, https://doi.org/10.1038/ngeo2182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eicker, A., E. Forootan, A. Springer, L. Longuevergne, and J. Kusche, 2016: Does GRACE see the terrestrial water cycle ‘intensifying’? J. Geophys. Res., 121, 733745, https://doi.org/10.1002/2015JD023808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Q., A. Zhao, A. Zhang, L. Feng, Y. Zhao, and H. Liu, 2018: Analysis of spatiotemporal characteristics of drought and flood in the Haihe River basin from 1965 to 2015. Int. Conf. on Geo-informatics in Sustainable Ecosystem and Society, Springer, 360–373.

    • Crossref
    • Export Citation
  • Fatichi, S., V. Y. Ivanov, and E. Caporali, 2012: Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality? J. Climate, 25, 55125523, https://doi.org/10.1175/JCLI-D-11-00356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., G. Vico, and A. Porporato, 2012: On the effects of seasonality on soil water balance and plant growth. Water Resour. Res., 48, W05543, https://doi.org/10.1029/2011WR011263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., A. Porporato, and I. Rodriguez-Iturbe, 2013: Changes in rainfall seasonality in the tropics. Nat. Climate Change, 3, 811815, https://doi.org/10.1038/nclimate1907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., J. T. Abatzoglou, and K. A. Novick, 2019: A new perspective on terrestrial hydrologic intensity that incorporates atmospheric water demand. Geophys. Res. Lett., 46, 81148124, https://doi.org/10.1029/2019GL084015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., Z. Jiang, Z. Guan, J. He, and Z. Xu, 2008: Climate of China and East Asian monsoon. Regional Climate Studies of China, C. Fu et al., Eds., Springer, 1–48.

    • Crossref
    • Export Citation
  • Fu, J., and W. Wang, 2019: On the lower bound of Budyko curve: The influence of precipitation seasonality. J. Hydrol., 570, 292303, https://doi.org/10.1016/j.jhydrol.2018.12.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, Q., S. Wang, X. Wen, C. Shen, and Z. Hao, 2007: Temperature and precipitation changes in China during the Holocene. Adv. Atmos. Sci., 24, 10241036, https://doi.org/10.1007/s00376-007-1024-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebrechorkos, S. H., S. Hülsmann, and C. Bernhofer, 2019: Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep., 9, 11 376, https://doi.org/10.1038/s41598-019-47933-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasson, S., V. Lucarini, S. Pascale, and J. Böhner, 2014: Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst. Dyn., 5, 6787, https://doi.org/10.5194/esd-5-67-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 12 December 2020, https://doi.org/10.24381/cds.6860a573.

    • Crossref
    • Export Citation
  • Hong, J., and J. Kim, 2011: Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: A wavelet analysis and its ecosystem modeling implications. Global Change Biol., 17, 19001916, https://doi.org/10.1111/j.1365-2486.2010.02337.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., T. Zhou, and B. Wu, 2021: Impact of developing ENSO on Tibetan Plateau summer rainfall. J. Climate, 34, 33853400, https://doi.org/10.1175/JCLI-D-20-0612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., J. Yao, Q. He, and J. Chen, 2021: Changes in precipitation amounts and extremes across Xinjiang (Northwest China) and their connection to climate indices. PeerJ, 9, e10792, https://doi.org/10.7717/peerj.10792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., B. Wang, X. Li, and H. Wang, 2018: Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s. Climate Dyn., 51, 443455, https://doi.org/10.1007/s00382-017-3933-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, S., K. Wang, and Y. Mao, 2020: Rapid local urbanization around most meteorological stations explains the observed daily asymmetric warming rates across China from 1985 to 2017. J. Climate, 33, 90459061, https://doi.org/10.1175/JCLI-D-20-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., and X. Zhang, 2020: Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA, 117, 13 30813 313, https://doi.org/10.1073/pnas.1921628117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konapala, G., A. K. Mishra, Y. Wada, and M. E. Mann, 2020: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., S.-K. Min, E. Fischer, H. Shiogama, I. Bethke, L. Lierhammer, and J. F. Scinocca, 2018: Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environ. Res. Lett., 13, 044033, https://doi.org/10.1088/1748-9326/aab55d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., Y. Chen, Z. Chen, H. Xiong, and L. Lian, 2016: Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmos. Res., 167, 275284, https://doi.org/10.1016/j.atmosres.2015.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and Coauthors, 2019: Annual precipitation and daily extreme precipitation distribution: Possible trends from 1960 to 2010 in urban areas of China. Geomatics Nat. Hazards Risk, 10, 16941711, https://doi.org/10.1080/19475705.2019.1609604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., F. Jiang, L. Li, and G. Wang, 2011: Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int. J. Climatol., 31, 16791693, http://doi.org/https://doi.org/10.1002/joc.2181.

    • Search Google Scholar
    • Export Citation
  • Li, Z., S. Yu, L. Wang, K. Mehmood, W. Liu, and K. Alapaty, 2018: Suppression of convective precipitation by elevated man-made aerosols is responsible for large-scale droughts in north China. Proc. Natl. Acad. Sci. USA, 115, E8327E8328, https://doi.org/10.1073/pnas.1811295115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, L., L. Li, and Q. Liu, 2011: Precipitation variability in Northeast China from 1961 to 2008. J. Hydrol., 404, 6776, https://doi.org/10.1016/j.jhydrol.2011.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res., 110, D08103, https://doi.org/10.1029/2004JD004864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Liang, and Y. Li, 2017: Observational and simulative study of a local severe precipitation event caused by a cold vortex over Northeast China. Adv. Meteor., 2017, 2764340, https://doi.org/10.1155/2017/2764340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., H. Li, J. Wu, T. Zhang, J. Liu, B. Liu, Y. Chen, and J. Baishan, 2019: Impact of El Niño and Southern Oscillation on the summer precipitation over Northwest China. Atmos. Sci. Lett., 20, e928, https://doi.org/10.1002/asl.928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., X.-W. Hong, and X.-Y. Li, 2016: Asymmetric association of rainfall and atmospheric circulation over East Asia with anomalous rainfall in the tropical western North Pacific in summer. Atmos. Oceanic Sci. Lett., 9, 185190, https://doi.org/10.1080/16742834.2016.1161489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lv, A., B. Qu, S. Jia, and W. Zhu, 2019: Influence of three phases of El Niño–Southern Oscillation on daily precipitation regimes in China. Hydrol. Earth Syst. Sci., 23, 883896, https://doi.org/10.5194/hess-23-883-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, F., A. ye, J. You, and Q. Duan, 2018: 2015–16 floods and droughts in China, and its response to the strong El Niño. Sci. Total Environ., 627, 14731484, https://doi.org/10.1016/j.scitotenv.2018.01.280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, https://doi.org/10.1175/JCLI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over Eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2017: Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theor. Appl. Climatol., 130, 345363, https://doi.org/10.1007/s00704-016-1881-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Mardero, S., B. Schmook, Z. Christman, S. E. Metcalfe, and B. De la Barreda-Bautista, 2020: Recent disruptions in the timing and intensity of precipitation in Calakmul, Mexico. Theor. Appl. Climatol., 140, 129144, https://doi.org/10.1007/s00704-019-03068-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C., Q. Duan, Q. Sun, X. Lei, and H. Li, 2019: Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environ. Res. Lett., 14, 025004, https://doi.org/10.1088/1748-9326/aaf306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2019: Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep., 9, 16063, https://doi.org/10.1038/s41598-019-52277-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., Y. Zhao, A. Ruiz-Barradas, and T. Zhou, 2015: The south-flood north-drought pattern over eastern China and the drying of the Gangetic Plain. Climate Change: Multidecadal and Beyond, World Scientific, 347–359.

    • Crossref
    • Export Citation
  • Papalexiou, S. M., and A. Montanari, 2019: Global and regional increase of precipitation extremes under global warming. Water Resour. Res., 55, 49014914, https://doi.org/10.1029/2018WR024067.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., V. Lucarini, X. Feng, A. Porporato, and S. ul Hasson, 2015: Analysis of rainfall seasonality from observations and climate models. Climate Dyn., 44, 32813301, https://doi.org/10.1007/s00382-014-2278-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., V. Lucarini, X. Feng, A. Porporato, and S. ul Hasson, 2016: Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Climate Dyn., 46, 13311350, https://doi.org/10.1007/s00382-015-2648-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and R. Knutti, 2018: The uneven nature of daily precipitation and its change. Geophys. Res. Lett., 45, 11 98011 988, https://doi.org/10.1029/2018GL080298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and Coauthors, 2013: Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agric. For. Meteor., 178–179, 4655, https://doi.org/10.1016/j.agrformet.2013.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nat. Commun., 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, https://doi.org/10.1038/nature09364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2019: Plant phenology and global climate change: Current progresses and challenges. Global Change Biol., 25, 19221940, https://doi.org/10.1111/gcb.14619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and J. T. Schoof, 2008: Changes in the seasonality of precipitation over the contiguous USA. J. Geophys. Res., 113, D21108, https://doi.org/10.1029/2008JD010251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., and X. Lin, 2005: Regional trends in recent precipitation indices in China. Meteor. Atmos. Phys., 90, 193207, https://doi.org/10.1007/s00703-004-0101-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohr, T., S. Manzoni, X. Feng, R. S. C. Menezes, and A. Porporato, 2013: Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J. Geophys. Res. Biogeosci., 118, 11561167, https://doi.org/10.1002/jgrg.20091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahany, S., S. K. Mishra, R. Pathak, and B. Rajagopalan, 2018: Spatiotemporal variability of seasonality of rainfall over India. Geophys. Res. Lett., 45, 71407147, https://doi.org/10.1029/2018GL077932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, Y., Z. Shi, X. Liu, Z. An, X. Li, and H. Chang, 2018: Role of the Tian Shan Mountains and Pamir Plateau in increasing spatiotemporal differentiation of precipitation over interior Asia. J. Climate, 31, 81418162, https://doi.org/10.1175/JCLI-D-17-0594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, P., S. Sun, M. Wang, N. Li, J. Wang, Y. Jin, X. Gu, and W. Yin, 2014: Climate change regionalization in China (1961–2010). Sci. China Earth Sci., 57, 26762689, https://doi.org/10.1007/s11430-014-4889-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., Y. Shen, E. Kang, D. Li, Y. Ding, G. Zhang, and R. Hu, 2007: Recent and future climate change in Northwest China. Climatic Change, 80, 379393, https://doi.org/10.1007/s10584-006-9121-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, J., and S. Park, 2020: Impacts of ENSO and Madden–Julian oscillation on the genesis of tropical cyclones simulated by general circulation models and compared to observations. Environ. Res. Lett., 15, 034046, https://doi.org/10.1088/1748-9326/ab7466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, and L. Dong, 2018: Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787792, https://doi.org/10.1038/s41558-018-0244-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., J. Lu, L. R. Leung, and F. Liu, 2020: Contrasting phase changes of precipitation annual cycle between land and ocean under global warming. Geophys. Res. Lett., 47, e2020GL090327, https://doi.org/10.1029/2020GL090327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, J. Lu, L. Dong, W. Zhou, B. Harrop, and Y. Qian, 2021: Emergence of seasonal delay of tropical rainfall during 1979–2019. Nat. Climate Change, 11, 605612, https://doi.org/10.1038/s41558-021-01066-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and F. Zhang, 2017: Daily extreme precipitation and trends over China. Sci. China Earth Sci., 60, 21902203, https://doi.org/10.1007/s11430-016-9117-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, and Q. Duan, 2017: Changes in the spatial heterogeneity and annual distribution of observed precipitation across China. J. Climate, 30, 93999416, https://doi.org/10.1175/JCLI-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., C. Miao, A. AghaKouchak, I. Mallakpour, D. Ji, and Q. Duan, 2020: Possible increased frequency of ENSO-related dry and wet conditions over some major watersheds in a warming climate. Bull. Amer. Meteor. Soc., 101, E409E426, https://doi.org/10.1175/BAMS-D-18-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., Y. Wu, B. Liu, and S. Chen, 2020: Inconsistent changes in global precipitation seasonality in seven precipitation datasets. Climate Dyn., 54, 30913108, https://doi.org/10.1007/s00382-020-05158-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Y., W. Wang, S. Song, and J. Ma, 2018: Spatial and temporal variations of precipitation extremes and seasonality over China from 1961–2013. Water, 10, 719, https://doi.org/10.3390/w10060719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teegavarapu, R. S. V., A. Goly, and J. Obeysekera, 2013: Influences of Atlantic multidecadal oscillation phases on spatial and temporal variability of regional precipitation extremes. J. Hydrol., 495, 7493, https://doi.org/10.1016/j.jhydrol.2013.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, F., B. Dong, J. Robson, and R. Sutton, 2018: Forced decadal changes in the East Asian summer monsoon: The roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 51, 36993715, https://doi.org/10.1007/s00382-018-4105-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Q., M. Prange, and U. Merkel, 2016: Precipitation and temperature changes in the major Chinese river basins during 1957–2013 and links to sea surface temperature. J. Hydrol., 536, 208221, https://doi.org/10.1016/j.jhydrol.2016.02.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Villarreal, S., and Coauthors, 2016: Contrasting precipitation seasonality influences evapotranspiration dynamics in water-limited shrublands. J. Geophys. Res. Biogeosci., 121, 494508, https://doi.org/10.1002/2015JG003169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Chen, S. F. B. Tett, Z. Yan, P. Zhai, J. Feng, and J. Xia, 2020: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun., 11, 528, https://doi.org/10.1038/s41467-019-14233-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., P.-M. Zhai, and D.-H. Qin, 2020: New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Climate Change Res., 11, 252260, https://doi.org/10.1016/j.accre.2020.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., J.-H. Yoon, E. Becker, and R. Gillies, 2017: California from drought to deluge. Nat. Climate Change, 7, 465468, https://doi.org/10.1038/nclimate3330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T.-J., J.-Z. Min, Y.-F. Xu, and K.-S. Lam, 2003: Seasonal variations of anthropogenic sulfate aerosol and direct radiative forcing over China. Meteor. Atmos. Phys., 84, 185198, https://doi.org/10.1007/s00703-002-0581-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Zhou, D. Qin, J. Wu, R. Gao, and L. Song, 2017: Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci., 34, 289305, https://doi.org/10.1007/s00376-016-6160-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, P. J., B. Jongman, M. Kummu, M. D. Dettinger, F. C. Sperna Weiland, and H. C. Winsemius, 2014: Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc. Natl. Acad. Sci. USA, 111, 15 65915 664, https://doi.org/10.1073/pnas.1409822111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welhouse, L. J., M. A. Lazzara, L. M. Keller, G. J. Tripoli, and M. H. Hitchman, 2016: Composite analysis of the effects of ENSO events on Antarctica. J. Climate, 29, 17971808, https://doi.org/10.1175/JCLI-D-15-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2016: Advances in studying interactions between aerosols and monsoon in China. Sci. China Earth Sci., 59 (1), 116, https://doi.org/10.1007/s11430-015-5198-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., Y. Ding, Y. Liu, and X. Li, 2019: The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol., 39, 52415255, https://doi.org/10.1002/joc.6136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., A. Duan, and Q. Tian, 2017: Weighted composite analysis and its application: An example using ENSO and geopotential height. Atmos. Sci. Lett., 18, 435440, https://doi.org/10.1002/asl.786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., C. Sun, J. Zuo, Z. Ma, W. Li, and S. Yang, 2019: Homogenization of monthly ground surface temperature in China during 1961–2016 and performances of GLDAS reanalysis products. J. Climate, 32, 11211135, https://doi.org/10.1175/JCLI-D-18-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, D., X. Zhang, Y. Yu, W. Guo, and N. P. Hanan, 2016: Characterizing land surface phenology and responses to rainfall in the Sahara Desert. J. Geophys. Res. Biogeosci., 121, 22432260, https://doi.org/10.1002/2016JG003441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang J., Y. Ding, R. Chen, L. Liu, 2002: The interdecadal fluctuation of dry and wet climate boundaries in China in recent 50 years. Acta Geogr. Sin., 57, 655661, https://doi.org/10.11821/xb200206004.

    • Search Google Scholar
    • Export Citation
  • Yao, J., Y. Chen, Y. Zhao, W. Mao, X. Xu, Y. Liu, and Q. Yang, 2018: Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: A case study in Xinjiang, China. Theor. Appl. Climatol., 131, 15031515, https://doi.org/10.1007/s00704-017-2058-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., P. Li, L. Wang, P. Wang, S. Wang, S. Chang, W. Liu, and K. Alapaty, 2016: Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. Proc. Natl. Acad. Sci. USA, 113, E2209E2210, https://doi.org/10.1073/pnas.1601104113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, J., S.-J. Jeong, C.-H. Ho, C.-E. Park, H. Park, and J. Kim, 2018: Influence of winter precipitation on spring phenology in boreal forests. Global Change Biol., 24, 51765187, https://doi.org/10.1111/gcb.14414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeppel, M. J. B., J. V. Wilks, and J. D. Lewis, 2014: Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences, 11, 30833093, https://doi.org/10.5194/bg-11-3083-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, https://doi.org/10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2018: Effects of seasonal variability of climatic factors on vegetation coverage across drylands in northern China. Land Degrad. Dev., 29, 17821791, https://doi.org/10.1002/ldr.2985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., J. Lin, W. Liu, and L. Han, 2019a: Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during the flood season. Sci. China Earth Sci., 62, 20832098, https://doi.org/10.1007/s11430-018-9357-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zhang, and L. Zou, 2019b: Future intensification of the water cycle with an enhanced annual cycle over global land monsoon regions. J. Climate, 32, 54375452, https://doi.org/10.1175/JCLI-D-18-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M. P. Dannenberg, T. Hwang, and C. Song, 2019c: El Niño–Southern Oscillation-induced variability of terrestrial gross primary production during the satellite era. J. Geophys. Res. Biogeosci., 124, 24192431, https://doi.org/10.1029/2019JG005117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, J., J. Bian, Q. Ge, Z. Hao, Y. Yin, and Y. Liao, 2013: The climate regionalization in China for 1981–2010. Chin. Sci. Bull., 58, 30883099, https://doi.org/10.1360/972012-1491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Y. Xu, J. Wu, S. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 10511066, https://doi.org/10.1002/joc.4400.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 607 359 14
Full Text Views 420 214 12
PDF Downloads 469 244 16

Reduction in Precipitation Seasonality in China from 1960 to 2018

Yuna MaoaState Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yuna Mao in
Current site
Google Scholar
PubMed
Close
,
Guocan WuaState Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Guocan Wu in
Current site
Google Scholar
PubMed
Close
,
Guangzhi XuaState Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Guangzhi Xu in
Current site
Google Scholar
PubMed
Close
, and
Kaicun WangaState Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Kaicun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in precipitation seasonality or the distribution of precipitation have important impacts on hydrological extremes (e.g., floods or droughts). Precipitation extremes have been widely reported to increase with global warming; however, the variability and mechanism of precipitation seasonality have not been well quantified in China. Here, we explore the multiscale variability in precipitation seasonality from 1960 to 2018 in China. A seasonality index of precipitation is defined to quantify the precipitation seasonality with a lower value indicating a more even distribution throughout a year. The seasonality index increases from southeastern to northwestern China, with a decrease in the annual mean precipitation, a later timing of the wet season, and a shorter wet season duration. The seasonality index decreases from 1960 to 2018 in China, accompanied by the increasing duration of wet season, especially in northern climate-sensitive basins, such as the Northwest River, Hai River, and Songliao River basins. In the Northwest River basin, for example, the observed significant decrease in the seasonality index (~0.02 decade−1) from 1960 to 2018 is consistent with a significant decrease in the ratio of annual maximum 10-day precipitation to annual precipitation, which is confirmed by their significant positive correlation (R = 0.72; p = 0). El Niño–Southern Oscillation (ENSO) dominates interannual fluctuations and spatial patterns of precipitation seasonality in China. In El Niño years, the precipitation seasonality index decreases across China except for the Yangtze River basin, with broad increases in annual precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaicun Wang, kcwang@bnu.edu.cn

Abstract

Changes in precipitation seasonality or the distribution of precipitation have important impacts on hydrological extremes (e.g., floods or droughts). Precipitation extremes have been widely reported to increase with global warming; however, the variability and mechanism of precipitation seasonality have not been well quantified in China. Here, we explore the multiscale variability in precipitation seasonality from 1960 to 2018 in China. A seasonality index of precipitation is defined to quantify the precipitation seasonality with a lower value indicating a more even distribution throughout a year. The seasonality index increases from southeastern to northwestern China, with a decrease in the annual mean precipitation, a later timing of the wet season, and a shorter wet season duration. The seasonality index decreases from 1960 to 2018 in China, accompanied by the increasing duration of wet season, especially in northern climate-sensitive basins, such as the Northwest River, Hai River, and Songliao River basins. In the Northwest River basin, for example, the observed significant decrease in the seasonality index (~0.02 decade−1) from 1960 to 2018 is consistent with a significant decrease in the ratio of annual maximum 10-day precipitation to annual precipitation, which is confirmed by their significant positive correlation (R = 0.72; p = 0). El Niño–Southern Oscillation (ENSO) dominates interannual fluctuations and spatial patterns of precipitation seasonality in China. In El Niño years, the precipitation seasonality index decreases across China except for the Yangtze River basin, with broad increases in annual precipitation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaicun Wang, kcwang@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.11 MB)
Save