• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., B. Ng, T. Geng, L. Wu, A. Santoso, and M. J. McPhaden, 2020: Butterfly effect and a self-modulating El Niño response to global warming. Nature, 585, 6873, https://doi.org/10.1038/s41586-020-2641-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. S. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, Y. Yu, and S. K. Behera, 2017: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., 49, 37993811, https://doi.org/10.1007/s00382-017-3544-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J.-Y. Lee, K.-J. Ha, K.-S. Yun, and R. Lu, 2016: Intensification of the western North Pacific anticyclone response to the short decaying El Niño event due to greenhouse warming. J. Climate, 29, 36073627, https://doi.org/10.1175/JCLI-D-15-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western North Pacific anomalous cyclone during strong La Niña decaying years. Climate Dyn., 49, 633647, https://doi.org/10.1007/s00382-016-3364-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Liu, and Z.-Z. Hu, 2021: The record-breaking meiyu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0361-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S. P. Xie, G. Huang, and K. M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., K. Fan, Z. Xu, and S. Li, 2018: ENSO–South China Sea summer monsoon interaction modulated by the Atlantic multidecadal oscillation. J. Climate, 31, 30613076, https://doi.org/10.1175/JCLI-D-17-0448.1.

    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, R. Wu, G. Huang, and D. Nath, 2018: Diversity of the Pacific–Japan pattern among CMIP5 Models: Role of SST anomalies and atmospheric mean flow. J. Climate, 31, 68576877, https://doi.org/10.1175/JCLI-D-17-0541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., 2017: A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback. Geophys. Res. Lett., 44, 85768584, https://doi.org/10.1002/2017GL074842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, and B. Wu, 2015: The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms. J. Meteor. Res., 29, 562575, https://doi.org/10.1007/s13351-015-5037-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, and T. Zhou, 2017: Interannual variability of eastern China summer rainfall: The origins of the meridional triple and dipole modes. Climate Dyn., 48, 683696, https://doi.org/10.1007/s00382-016-3103-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, and T. Li, 2019: Weakened anomalous western North Pacific anticyclone during an El Niño–decaying summer under a warmer climate: Dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J. Climate, 32, 213230, https://doi.org/10.1175/JCLI-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hu, K., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, P. Huang, Y. Kosaka, and S.-P. Xie, 2021: Intensification of El Niño–induced atmospheric anomalies under greenhouse warming. Nat. Geosci., 14, 377382, https://doi.org/10.1038/s41561-021-00730-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., and D. Chen, 2017: Enlarged asymmetry of tropical Pacific rainfall anomalies induced by El Niño and La Niña under global warming. J. Climate, 30, 13271343, https://doi.org/10.1175/JCLI-D-16-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., D. Chen, and J. Ying, 2017: Weakening of the tropical atmospheric circulation response to local sea surface temperature anomalies under global warming. J. Climate, 30, 81498158, https://doi.org/10.1175/JCLI-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., D. Hu, Z. Tian, and X. Lang, 2020: Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci., 37, 11021118, https://doi.org/10.1007/s00376-020-2034-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, and K. Hu, 2018: Weakening of northwest Pacific anticyclone anomalies during post–El Niño summers under global warming. J. Climate, 31, 35393555, https://doi.org/10.1175/JCLI-D-17-0613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, R. Wu, K. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 34873503, https://doi.org/10.1175/JCLI-D-18-0793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., I.-S. Kang, and S.-I. An, 2003: Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J. Geophys. Res., 108, 3284, https://doi.org/10.1029/2002JC001671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. L., J. Lu, G. Huang, and K. M. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, https://doi.org/10.1175/2008JCLI2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, and T. Zhou, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and M. Ting, 2015: Recent and future changes in the Asian monsoon–ENSO relationship: Natural or forced? Geophys. Res. Lett., 42, 35023512, https://doi.org/10.1002/2015GL063557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zhou, D. Chen, C. Li, and J. Song, 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 87788792, https://doi.org/10.1175/JCLI-D-14-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and G. Chen, 2018: Intensified influence of the ENSO Modoki on boreal summer tropical cyclone genesis over the western North Pacific since the early 1990s. Int. J. Climatol., 38 (S1), e1258e1265, https://doi.org/10.1002/joc.5347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., and B. W. Dong, 2005: Impact of Atlantic sea surface temperature anomalies on the summer climate in the western North Pacific during 1997–1998. J. Geophys. Res., 110, D16102, https://doi.org/10.1029/2004JD005676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pennell, C., and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367, https://doi.org/10.1175/2010JCLI3814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., F. Delage, R. Colman, and A. Moise, 2012: Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J. Climate, 25, 37923809, https://doi.org/10.1175/JCLI-D-11-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502 (7472), 541545, https://doi.org/10.1038/nature12580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X., R. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2015: The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon–ENSO relationship during the twentieth century. J. Climate, 28, 70937107, https://doi.org/10.1175/JCLI-D-14-00783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., G. Huang, K. Hu, X. Qu, G. Wen, and H. Gong, 2015: Interdecadal modulation of ENSO teleconnections to the Indian Ocean basin mode and their relationship under global warming in CMIP5 models. Int. J. Climatol., 35, 391407, https://doi.org/10.1002/joc.3987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., and T. Kubota, 2005: East–west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, https://doi.org/10.1029/2005GL023010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 12351248, https://doi.org/10.1007/s00376-017-7016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res., 104, 51315149, https://doi.org/10.1029/1998JC900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Wu, J. Lu, Q. Liu, H. Zhao, W. Tian, and J. Cao, 2020: Interannual variability of the basinwide translation speed of tropical cyclones in the western North Pacific. J. Climate, 33, 86418650, https://doi.org/10.1175/JCLI-D-19-0995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Wang, L. Zhang, and X. Wang, 2015: Multidecadal variability of tropical cyclone rapid intensification in the western North Pacific. J. Climate, 28, 38063820, https://doi.org/10.1175/JCLI-D-14-00400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. He, and T. Li, 2019: Decadal change in the relationship between East Asian spring circulation and ENSO: Is it modulated by Pacific decadal oscillation? Int. J. Climatol., 39, 172187, https://doi.org/10.1002/joc.5793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. He, and T. Li, 2020a: Response of the anomalous western North Pacific anticyclone during El Niño mature winter to global warming. Climate Dyn., 54, 727740, https://doi.org/10.1007/s00382-019-05024-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. He, and T. Li, 2020b: Impact of global warming on the western North Pacific circulation anomaly during developing El Niño. J. Climate, 33, 23332349, https://doi.org/10.1175/JCLI-D-19-0588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. J. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., T. Zhou, X. Chen, and B. Wu, 2020: Intermodel uncertainty in the projection of the anomalous western North Pacific anticyclone associated with El Niño under global warming. Geophys. Res. Lett., 47, e2019GL086139, https://doi.org/10.1029/2019GL086139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., T. Zhou, and X. Chen, 2021: The source of uncertainty in projecting the anomalous western North Pacific anticyclone during El Niño–decaying summers. J. Climate, 34, 66036617, https://doi.org/10.1175/JCLI-D-20-0904.1.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., Y. Hu, and J. Liu, 2020: Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Sci. Bull., 65, 16671674, https://doi.org/10.1016/j.scib.2020.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., T. Wu, J. Zhang, J. Yao, and Y. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol., 40, 64236440, https://doi.org/10.1002/joc.6590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaura, T., and T. Tomita, 2014: Two physical mechanisms controlling the interannual variability of Baiu precipitation. J. Meteor. Soc. Japan, 92, 305325, https://doi.org/10.2151/jmsj.2014-403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Z., B. Wu, T. Li, M. Collins, R. Clark, T. Zhou, J. Murphy, and G. Tan, 2020: Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Sci. Adv., 6, eaax4177, https://doi.org/10.1126/sciadv.aax4177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., W. Li, R. E. Kopp, and Y. Deng, 2018: Response of subtropical stationary waves and hydrological extremes to climate warming in boreal summer. J. Climate, 31, 10 16510 180, https://doi.org/10.1175/JCLI-D-17-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., and A. Timmermann, 2018: Decadal monsoon–ENSO relationships reexamined. Geophys. Res. Lett., 45, 20142021, https://doi.org/10.1002/2017GL076912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., J.-Y. Lee, A. Timmermann, K. Stein, M. F. Stuecker, J. C. Fyfe, and E.-S. Chung, 2021: Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ., 2, 43, https://doi.org/10.1038/s43247-021-00108-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., S. Akimasa, and K. Masahide, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11 37511 382, https://doi.org/10.1002/2016GL071190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and C. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275288, https://doi.org/10.1007/s00382-018-4136-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, J., and C. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Sci. China Earth Sci., 64, 16071618, https://doi.org/10.1007/s11430-020-9758-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 371 371 21
Full Text Views 132 132 11
PDF Downloads 152 152 13

Response of Western North Pacific Anomalous Anticyclones in the Summer of Decaying El Niño to Global Warming: Diverse Projections Based on CMIP6 and CMIP5 Models

View More View Less
  • 1 a Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
  • | 2 b State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 3 c Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
  • | 4 d Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The anomalous anticyclone over the western North Pacific (WNPAC) is a key atmospheric bridge through which El Niño–Southern Oscillation (ENSO) affects East Asian climate. In this study, the response of the anomalous WNPAC to global warming under the high-emission scenario is investigated based on 40 models from CMIP6 and 30 models from CMIP5. Despite low intermodel consensus, the multimodel median (MMM) of CMIP6 models projects an enhanced anomalous WNPAC but the MMM of CMIP5 models projects a weakened anomalous WNPAC, both of which reach about 0.5 standard deviation of the decadal internal variability derived from the preindustrial control experiment. As consistently projected by CMIP6 and CMIP5 models, the same magnitude of sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) stimulates a weaker anomalous WNPAC under a warmer climate, and this mechanism is responsible for the weakened anomalous WNPAC based on the CMIP5 MMM. However, the above mechanism is overwhelmed by another mechanism related to the changes in tropical SSTA based on the CMIP6 MMM. As a result of the enhanced warm SSTA over the TIO and the eastward shift of the warm SSTA over the equatorial Pacific during the decaying El Niño, the warm Kelvin wave emanating from the TIO is enhanced along with the stronger zonal SSTA gradient based on the CMIP6 MMM, enhancing the anomalous WNPAC. The diverse changes in the zonal SSTA gradient between the TIO and the equatorial western Pacific also explain the intermodel diversity of the changes in anomalous WNPAC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao He, hechao@jnu.edu.cn

Abstract

The anomalous anticyclone over the western North Pacific (WNPAC) is a key atmospheric bridge through which El Niño–Southern Oscillation (ENSO) affects East Asian climate. In this study, the response of the anomalous WNPAC to global warming under the high-emission scenario is investigated based on 40 models from CMIP6 and 30 models from CMIP5. Despite low intermodel consensus, the multimodel median (MMM) of CMIP6 models projects an enhanced anomalous WNPAC but the MMM of CMIP5 models projects a weakened anomalous WNPAC, both of which reach about 0.5 standard deviation of the decadal internal variability derived from the preindustrial control experiment. As consistently projected by CMIP6 and CMIP5 models, the same magnitude of sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) stimulates a weaker anomalous WNPAC under a warmer climate, and this mechanism is responsible for the weakened anomalous WNPAC based on the CMIP5 MMM. However, the above mechanism is overwhelmed by another mechanism related to the changes in tropical SSTA based on the CMIP6 MMM. As a result of the enhanced warm SSTA over the TIO and the eastward shift of the warm SSTA over the equatorial Pacific during the decaying El Niño, the warm Kelvin wave emanating from the TIO is enhanced along with the stronger zonal SSTA gradient based on the CMIP6 MMM, enhancing the anomalous WNPAC. The diverse changes in the zonal SSTA gradient between the TIO and the equatorial western Pacific also explain the intermodel diversity of the changes in anomalous WNPAC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao He, hechao@jnu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.71 MB)
Save