• Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anyamba, A., and Coauthors, 2014: Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLOS ONE, 9, e92538, https://doi.org/10.1371/journal.pone.0092538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N., W. Putman, S. Freitas, L. Takacs, and S. Rabenhorst, 2020: Impacts of new atmospheric physics in the updated GEOS FP system (version 5.25). GMAO Research Brief, 13 pp., https://gmao.gsfc.nasa.gov/researchbriefs/new_atmos_phys_GEOS-FP/new_atmos_phys_GEOS-FP.pdf.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. J., 2020: Future changes in heatwave severity, duration and frequency due to climate change for the most populous cities. Wea. Climate Extremes, 30, 100278, https://doi.org/10.1016/j.wace.2020.100278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity of midlatitude atmospheric flow in a warming world. Geophys. Res. Lett., 43, 82598268, https://doi.org/10.1002/2016GL070309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, N., M. Lee, D. Cha, Y. Lim, and K. Kim, 2020: Decadal changes in the interannual variability of heat waves in East Asia caused by atmospheric teleconnection changes. J. Climate, 33, 15051522, https://doi.org/10.1175/JCLI-D-19-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciavarella, A. , and Coauthors, 2020: Prolonged Siberian heat of 2020. World Weather Attribution, accessed 9 March 2021, https://www.worldweatherattribution.org/wp-content/uploads/WWA-Prolonged-heat-Siberia-2020.pdf.

    • Search Google Scholar
    • Export Citation
  • Collow, A., M. Bosilovich, A. Dezfuli, and R. Lucchesi, 2020: File specification for MERRA-2 climate statistics products. GMAO Office Note 19 (version 1.0), 15 pp., http://gmao.gsfc.nasa.gov/pubs/office_notes.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, B. and M. Lu, 2020: Heatwave and blocking in the Northeastern Asia: Occurrence, variability, and association. J. Geophys. Res. Atmos., 125, e2019JD031627, https://doi.org/10.1029/2019JD031627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, https://doi.org/10.1080/10643380802238137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015a: MERRA-2 statD_2d_slv_Nx: 2d, daily, aggregated statistics, single-level, assimilation, single-level diagnostics V5.12.4, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 July 2020, https://doi.org/10.5067/9SC1VNTWGWV3.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015b: MERRA-2 tavgM_2d_slv_Nx: 2d, monthly mean, time-averaged, single-level, assimilation, single-level diagnostics V5.12.4, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 July 2020, https://doi.org/10.5067/AP1B0BA5PD2K.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015c: MERRA-2 tavgM_2d_flx_Nx: 2d, monthly mean, time-averaged, single-level, assimilation, surface flux diagnostics V5.12.4, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 21 April 2021, https://doi.org/10.5067/0JRLVL8YV2Y4.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015d: MERRA-2 tavgM_2d_lnd_Nx: 2d, monthly mean, time-averaged, single-level, assimilation, land surface diagnostics V5.12.4, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 20 July 2020, https://doi.org/10.5067/8S35XF81C28F.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2020a: MERRA-2 tavgC_2d_ltm_Nx: 2d, single-level, long term mean diagnostics V1, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 1 February 2020, https://doi.org/10.5067/HWSZE7YK7L81.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2020b: MERRA-2 statM_2d_edi_Nx: 2d, single-level, monthly extremes detection indices V1, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 1 February 2021, https://doi.org/10.5067/QFJ13GEGDI99.

    • Search Google Scholar
    • Export Citation
  • Goss, M., E. A. Lindgren, A. Sheshadri, and N. S. Diffenbaugh, 2021: The Atlantic jet response to stratospheric events: A regime perspective. J. Geophys. Res. Atmos., 126, https://doi.org/10.1029/2020JD033358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, https://doi.org/10.1038/ngeo1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 809–24 822, https://doi.org/10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., R. H. Reichle, S. P. Mahanama, J. Perket, Q. Liu, and G. Partyka, 2020: Land-focused changes in the updated GEOS FP system (version 5.25). GMAO Research Brief, 11 pp., https://gmao.gsfc.nasa.gov/researchbriefs/land_changes_GEOS-FP/land_changes_GEOS-FP.pdf.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, Z. D., Perlwitz, J., Butler, A. H., Manney, G. L., Newman, P. A., Lee, S. H., and Nash, E. R. 2020: The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record‐breaking Arctic Oscillation and ozone loss. J. Geophys. Res. Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, O., J. Seo, J. Won, J. Choi, and S. Kim, 2021: Future extreme heat wave events using Bayesian heat wave intensity-persistence day-frequency model and their uncertainty. Atmos. Res., 255, 105541, https://doi.org/10.1016/j.atmosres.2021.105541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro‐Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010GL046557.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 13, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A. M., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A. M., and Coauthors, 2020: GEOS‐S2S version 2: The GMAO high‐resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos., 125, e2019JD031767, https://doi.org/10.1029/2019JD031767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, J. M., M. Collins, J. A. Screen, S. I. Thomson, and N. Dunstone, 2020: The North Atlantic as a driver of summer atmospheric circulation. J. Climate, 33, 73357351, https://doi.org/10.1175/JCLI-D-19-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otrachshenko, V., O. Popova, and P. Solomin, 2018: Misfortunes never come singly: Consecutive weather shocks and mortality in Russia. Econ. Hum. Biol., 31, 249258, https://doi.org/10.1016/j.ehb.2018.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2021: The 2020 Siberian heat wave. Int. J. Climatol., 41, E341E2346, https://doi.org/10.1002/joc.6850.

  • Overland, J. E., and Coauthors, 2021: How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events? Environ. Res. Lett., 16, 043002, https://doi.org/10.1088/1748-9326/abdb5d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, and D. B. Stephenson, 2005: Observed trends and teleconnections of the Siberian high: A recently declining center of action. J. Climate, 18, 14111422, https://doi.org/10.1175/JCLI3352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., 2020: Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features. J. Climate, 33, 9931016, https://doi.org/10.1175/JCLI-D-19-0638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., R. J. H. Dunn, R. W. Schlegel, M. G. Donat, and M. G. Bosilovich, 2021: Land and marine temperature extremes [in “State of the Climate in 2020”]. Bull. Amer. Meteor., 102 (8), S31S34, https://doi.org/10.1175/2021BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Ponomarev, E., N. Yakimov, T. Ponomareva, O. Yakubailik, and S. G. Conard, 2021: Current trend of carbon emissions from wildfires in Siberia. Atmosphere, 12, 559, https://doi.org/10.3390/atmos12050559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmijn, L. M., and Coauthors, 2018: Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nat. Climate Change, 8, 381385, https://doi.org/10.1038/s41558-018-0114-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rustemeyer, N., and M. Howells, 2021: Excess mortality in England during the 2019 summer heatwaves. Climate, 9, 14, https://doi.org/10.3390/cli9010014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneidereit, A., S. Schubert, P. Vargin, F. Lunkeit, X. Zhu, D. H. W. Peters, and K. Fraedrich, 2012: Large-scale flow and the long-lasting blocking high over Russia: Summer 2010. Mon. Wea. Rev., 140, 29672981, https://doi.org/10.1175/MWR-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2013a: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013b: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, Y.-W., K.-J. Ha, and T.-W. Park, 2021: Feedback attribution to dry heatwaves over East Asia. Environ. Res. Lett., 16, 064003, https://doi.org/10.1088/1748-9326/abf18f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., L. M. Polvani, and L. B. Tremblay, 2018: The impact of stratospheric circulation extremes on minimum Arctic sea ice extent. J. Climate, 31, 71697183, https://doi.org/10.1175/JCLI-D-17-0495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, N. P., M. G. Bosilovich, A. B. M. Collow, R. D. Koster, S. D. Schuber, A. Dezfuli, and S. P. Mahanama, 2020: Mechanisms associated with daytime and nighttime heat waves over the contiguous United States. J. Appl. Meteor. Climatol., 59, 18651882, https://doi.org/10.1175/JAMC-D-20-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, https://doi.org/10.1029/2012JD018020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and S. Chen, 2020: What leads to persisting surface air temperature anomalies from winter to following spring over mid- to high-latitude Eurasia? J. Climate, 33, 58615883, https://doi.org/10.1175/JCLI-D-19-0819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., F. Dominguez, and X. Zeng, 2019: Large and local-scale features associated with heat waves in the United States in reanalysis products and the NARCCAP model ensemble. Climate Dyn., 52, 18831901, https://doi.org/10.1007/s00382-018-4414-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651, https://doi.org/10.1175/JCLI3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 509 501 38
Full Text Views 188 184 16
PDF Downloads 229 224 16

Seasonal Variability in the Mechanisms behind the 2020 Siberian Heatwaves

Allison B. Marquardt CollowaUniversities Space Research Association, Columbia, Maryland
bGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Allison B. Marquardt Collow in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3566-3889
,
Natalie P. ThomasaUniversities Space Research Association, Columbia, Maryland
bGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Natalie P. Thomas in
Current site
Google Scholar
PubMed
Close
,
Michael G. BosilovichbGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Michael G. Bosilovich in
Current site
Google Scholar
PubMed
Close
,
Young-Kwon LimaUniversities Space Research Association, Columbia, Maryland
bGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Young-Kwon Lim in
Current site
Google Scholar
PubMed
Close
,
Siegfried D. SchubertcScience Systems and Applications, Inc., Lanham, Maryland
bGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Siegfried D. Schubert in
Current site
Google Scholar
PubMed
Close
, and
Randal D. KosterbGlobal Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Record-breaking heatwaves and wildfires immersed Siberia during the boreal spring of 2020 following an anomalously warm winter. Springtime heatwaves are becoming more common in the region, with statistically significant trends in the frequency, magnitude, and duration of heatwave events over the past four decades. Mechanisms by which the heatwaves occur and contributing factors differ by season. Winter heatwave frequency is correlated with the atmospheric circulation, particularly the Arctic Oscillation, while the frequency of heatwaves during the spring months is highly correlated with aspects of the land surface including snow cover, albedo, and latent heat flux. Idealized AMIP-style experiments are used to quantify the contribution of suppressed Arctic sea ice and snow cover over Siberia on the atmospheric circulation, surface energy budget, and surface air temperature in Siberia during the winter and spring of 2020. Sea ice concentration contributed to the strength of the stratospheric polar vortex and Arctic Oscillation during the winter months, thereby influencing the tropospheric circulation and surface air temperature over Siberia. Warm temperatures across the region resulted in an earlier-than-usual recession of the winter snowpack. The exposed land surface contributed to up to 20% of the temperature anomaly during the spring through the albedo feedback and changes in the ratio of the latent and sensible heat fluxes. This, in combination with favorable atmospheric circulation patterns, resulted in record-breaking heatwaves in Siberia in the spring of 2020.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison Collow, allison.collow@nasa.gov

Abstract

Record-breaking heatwaves and wildfires immersed Siberia during the boreal spring of 2020 following an anomalously warm winter. Springtime heatwaves are becoming more common in the region, with statistically significant trends in the frequency, magnitude, and duration of heatwave events over the past four decades. Mechanisms by which the heatwaves occur and contributing factors differ by season. Winter heatwave frequency is correlated with the atmospheric circulation, particularly the Arctic Oscillation, while the frequency of heatwaves during the spring months is highly correlated with aspects of the land surface including snow cover, albedo, and latent heat flux. Idealized AMIP-style experiments are used to quantify the contribution of suppressed Arctic sea ice and snow cover over Siberia on the atmospheric circulation, surface energy budget, and surface air temperature in Siberia during the winter and spring of 2020. Sea ice concentration contributed to the strength of the stratospheric polar vortex and Arctic Oscillation during the winter months, thereby influencing the tropospheric circulation and surface air temperature over Siberia. Warm temperatures across the region resulted in an earlier-than-usual recession of the winter snowpack. The exposed land surface contributed to up to 20% of the temperature anomaly during the spring through the albedo feedback and changes in the ratio of the latent and sensible heat fluxes. This, in combination with favorable atmospheric circulation patterns, resulted in record-breaking heatwaves in Siberia in the spring of 2020.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allison Collow, allison.collow@nasa.gov
Save