• Abbott, T., and T. Cronin, 2021: Aerosol invigoration of atmospheric convection through increases in humidity. Science, 371, 652485, https://doi.org/10.1126/science.abc5181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, https://doi.org/10.1088/1748-9326/5/2/025205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552, https://doi.org/10.1007/s10712-012-9213-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Bador, M., M. Donat, O. Geoffroy, and L. Alexander, 2018: Assessing the robustness of future extreme precipitation intensification in the CMIP5 ensemble. J. Climate, 31, 65056525, https://doi.org/10.1175/JCLI-D-17-0683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, https://doi.org/10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, https://doi.org/10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., A. F. Moise, and R. A. Colman, 2017: Projected increases in daily to decadal variability of Asian-Australian monsoon rainfall. Geophys. Res. Lett., 44, 56835690, https://doi.org/10.1002/2017GL073217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, and K. Willett, 2016: A simple moisture advection model of specific humidity change over land in response to SST warming. J. Climate, 29, 76137632, https://doi.org/10.1175/JCLI-D-16-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, Y. Zhang, and K. Rasmussen, 2020: Changes in convective available potential energy and convective inhibition under global warming. J. Climate, 33, 20252050, https://doi.org/10.1175/JCLI-D-19-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christenson, J., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 12171308.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., J. Li, M. Dubey, M. Wang, and G. Lesins, 2011: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos. Chem. Phys. Discuss., 11, 893907, https://doi.org/10.5194/acpd-11-22893-2011.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Dai, A., R. Rasmussen, C. Liu, K. Ikeda, and A. Prein, 2017: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., 55, 343368, https://doi.org/10.1007/s00382-017-3787-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., and A. John, 2021: Fast adjustment versus slow SST-mediated response of daily precipitation statistics to abrupt 4xCO2. Climate Dyn., 56, 10831104, https://doi.org/10.1007/s00382-020-05522-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., and Coauthors, 2021: Water cycle changes. Climatic Change 2021: The Physical Science Basis. Cambridge University Press, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/, in press.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL-ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nat. Climate Change, 6, 986991, https://doi.org/10.1038/nclimate3110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Sedláček, E. Hawkins, and R. Knutti, 2014: Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett., 41, 85548562, https://doi.org/10.1002/2014GL062018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H., and Coauthors, 2021: Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ., 2, 107122, https://doi.org/10.1038/s43017-020-00128-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W., and A. Prein, 2019: Separating dynamic and thermodynamic impacts of climate change on daytime convective development over land. J. Climate, 32, 52135234, https://doi.org/10.1175/JCLI-D-19-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571364, https://doi.org/10.1175/2010BAMS2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and B. J. Soden, 2015: Anthropogenic weakening of the tropical circulation: The relative roles of direct CO2 forcing and sea surface temperature change. J. Climate, 28, 87288742, https://doi.org/10.1175/JCLI-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, https://doi.org/10.1007/s00382-006-0158-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., M. Singh, and L. Jungandreas, 2019: Radiative convective equilibrium and organized convection: An observational perspective. J. Geophys. Res. Atmos., 124, 54185430, https://doi.org/10.1029/2018JD030092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffrey, M., L. Rotstayn, M. Collier, S. Dravitzki, C. Hamalainen, C. Moeseneder, K. Wong, and J. Syktus, 2013: Australian CMIP5 submission using the CSIRO-Mk3.6 model. Aust. Meteor. Oceanogr. J., 63, 113, https://doi.org/10.22499/2.6301.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, https://doi.org/10.5194/gmd-7-2039-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., R. Stratton, S. Tucker, J. Marsham, S. Berthou, D. Rowell, and C. Senior, 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical convective transition statistics and causality in the water vapor precipitation relation. J. Atmos. Sci., 74, 915931, https://doi.org/10.1175/JAS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., A. J. Ferraro, and R. Chadwick, 2017: Land–ocean shifts in tropical precipitation linked to surface temperature and humidity change. J. Climate, 30, 45274545, https://doi.org/10.1175/JCLI-D-16-0649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, https://doi.org/10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, https://doi.org/10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehran, A., A. AghaKouchak, and T. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, https://doi.org/10.1002/2013JD021152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and P. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, https://doi.org/10.1038/nclimate1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Rep NCAR/TN-485+STR, 224 pp.

  • Nishant, N., and S. Sherwood, 2021: How strongly are mean and extreme precipitation coupled? Geophys. Res. Lett., 48, https://doi.org/10.1029/2020GL092075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P., R. Allan, M. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, https://doi.org/10.1007/s10712-011-9159-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., P. Yiou, and A. Jezequel, 2019: Revisiting the dynamic and thermodynamic processes driving the record-breaking January 2014 precipitation in the southern UK. Sci. Rep., 9, 2859, https://doi.org/10.1038/s41598-019-39306-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. Boos, S. Bordoni, T. Delworth, S. Kapnick, H. Murakami, G. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., and D. Hartmann, 2014a: Changes in the distribution of rain frequency and intensity in response to global warming. J. Climate, 27, 83728383, https://doi.org/10.1175/JCLI-D-14-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., and D. Hartmann, 2014b: Two modes of change of the distribution of rain. J. Climate, 27, 83578371, https://doi.org/10.1175/JCLI-D-14-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A., R. Knutti, F. Lehner, C. Deser, and B. Sanderson, 2017: Precipitation variability increases in a warmer climate. Sci. Rep., 7, 17966, https://doi.org/10.1038/s41598-017-17966-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K., A. Prein, R. Rasmussen, K. Ikeda, and C. Liu, 2017: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., 55, 383408, https://doi.org/10.1007/s00382-017-4000-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, https://doi.org/10.1175/2011JCLI4104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, https://doi.org/10.1175/2008JCLI2144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, https://doi.org/10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, https://doi.org/10.1175/JCLI4263.1.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: A summary of the CMIP5 experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, https://doi.org/10.1023/A:1005488920935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E., N. Dianskii, and A. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv., Atmos. Ocean. Phys., 46, 414431, https://doi.org/10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2020: Monsoons climate change assessment. Bull. Amer. Meteor. Soc., 102 (1), E1E19, https://doi.org/10.1175/BAMS-D-19-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, https://doi.org/10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, https://doi.org/10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and T. Zhou, 2019: Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Climate, 32, 84658488, https://doi.org/10.1175/JCLI-D-18-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 416 406 42
Full Text Views 155 146 23
PDF Downloads 218 209 44

How Do Regional Distributions of Daily Precipitation Change under Warming?

View More View Less
  • 1 aMet Office Hadley Centre, Exeter, United Kingdom
  • | 2 bGlobal Systems Institute, Department of Mathematics, University of Exeter, Exeter, United Kingdom
  • | 3 cNational Center for Atmospheric Research, Boulder, Colorado
  • | 4 dCornell University, Ithaca, New York
  • | 5 eNational Institute for Space Research (INPE), São José dos Campos, São Paulo, Brazil
  • | 6 fCentre for Climate Research, Singapore
Restricted access

Abstract

Global warming is changing the intensity distribution of daily precipitation, with an increased frequency of heavy precipitation and reduced frequency of light/moderate precipitation in general circulation model (GCM) projections. Projected future CMIP5 GCM changes in regional daily precipitation distribution can be described by a combination of two idealized modes: a frequency decrease mode, representing a reduction in the frequency of precipitation at all rain rates; and a frequency shift mode, where the distribution shifts toward heavier rain rates. A decrease in daily precipitation frequency and an increase in intensity are projected in most regions, but the magnitude of change shows large regional variations. The two modes generally capture the projected shift from light/moderate to heavy rain rates but do not recreate GCM changes at the very highest and lowest rain rates. We propose a simple framework for deep convective precipitation change based on the dry static energy (DSE) budget, which provides a physical explanation of these idealized modes in regions and seasons where deep convection dominates precipitation. One possibility is that a frequency decrease mode is driven by increased convective inhibition (CIN). In this DSE framework, increased moisture under warming could influence the shape of the precipitation intensity distribution, particularly at the highest rain rates, but does not govern the overall magnitude of the shift to heavier rain rates, which is not well described by the Clausius–Clapeyron relationship. Changes in daily regional precipitation are not free to respond only to local changes (in e.g., moisture) but are also constrained by the DSE budget, particularly by DSE transport associated with the large-scale circulation.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robin Chadwick, robin.chadwick@metoffice.gov.uk

Abstract

Global warming is changing the intensity distribution of daily precipitation, with an increased frequency of heavy precipitation and reduced frequency of light/moderate precipitation in general circulation model (GCM) projections. Projected future CMIP5 GCM changes in regional daily precipitation distribution can be described by a combination of two idealized modes: a frequency decrease mode, representing a reduction in the frequency of precipitation at all rain rates; and a frequency shift mode, where the distribution shifts toward heavier rain rates. A decrease in daily precipitation frequency and an increase in intensity are projected in most regions, but the magnitude of change shows large regional variations. The two modes generally capture the projected shift from light/moderate to heavy rain rates but do not recreate GCM changes at the very highest and lowest rain rates. We propose a simple framework for deep convective precipitation change based on the dry static energy (DSE) budget, which provides a physical explanation of these idealized modes in regions and seasons where deep convection dominates precipitation. One possibility is that a frequency decrease mode is driven by increased convective inhibition (CIN). In this DSE framework, increased moisture under warming could influence the shape of the precipitation intensity distribution, particularly at the highest rain rates, but does not govern the overall magnitude of the shift to heavier rain rates, which is not well described by the Clausius–Clapeyron relationship. Changes in daily regional precipitation are not free to respond only to local changes (in e.g., moisture) but are also constrained by the DSE budget, particularly by DSE transport associated with the large-scale circulation.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robin Chadwick, robin.chadwick@metoffice.gov.uk
Save