• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., J. W. Hurrell, I. Ebert-Uphoff, C. Anderson, and D. Anderson, 2019: Viewing forced climate patterns through an AI lens. Geophys. Res. Lett., 46, 13 38913 398, https://doi.org/10.1029/2019GL084944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berdahl, M., and Coauthors, 2018: Southeast Greenland winter precipitation strongly linked to the Icelandic low position. J. Climate, 31, 44834500, https://doi.org/10.1175/JCLI-D-17-0622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., D. Fortuny, G. J. van Oldenborgh, and B. Liebmann, 2012: The summer North Atlantic Oscillation in CMIP3 models and related uncertainties in projected summer drying in Europe. J. Geophys. Res., 117, D16104, https://doi.org/10.1029/2012JD017816.

    • Search Google Scholar
    • Export Citation
  • Bothe, O., and E. Zorita, 2020: Proxy surrogate reconstructions for Europe and the estimation of their uncertainties. Climate Past, 16, 341369, https://doi.org/10.5194/cp-16-341-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., 1996: Are there optimum sites for global paleotemperature reconstruction? Climatic Variations and Forcing Mechanisms of the Last 2000 Years. P. D. Jones, R. S. Bradley, and J. Jouzel, Eds., Springer, 603624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., and Coauthors, 2020: Unlocking pre-1850 instrumental meteorological records: A global inventory. Bull. Amer. Meteor. Soc., 100, ES389ES413, https://doi.org/10.1175/BAMS-D-19-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carro-Calvo, L., F. Jaume-Santero, R. García-Herrera, and S. Salcedo-Sanz, 2021: k-Gaps: A novel technique for clustering incomplete climatological time series. Theor. Appl. Climatol., 143, 447460, https://doi.org/10.1007/s00704-020-03396-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casty, C., C. C. Raible, T. F. Stocker, H. Wanner, and J. Luterbacher, 2007: A European pattern climatology 1766–2000. J. Climate Dyn., 29, 791805, https://doi.org/10.1007/s00382-007-0257-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherchi, A., T. Ambrizzi, S. Behera, A. C. V. Freitas, Y. Morioka, and T. Zhou, 2018: The response of subtropical highs to climate change. Curr. Climate, 4, 371382, https://doi.org/10.1007/s40641-018-0114-1.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 12171308.

    • Search Google Scholar
    • Export Citation
  • Comas-Bru, L., and A. Hernández, 2018: Reconciling North Atlantic climate modes: Revised monthly indices for the east Atlantic and the Scandinavian patterns beyond the 20th century. Earth Syst. Sci. Data, 10, 23292344, https://doi.org/10.5194/essd-10-2329-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., Y. Kushnir, J. E. Smerdon, A. P. Williams, K. J. Anchukaitis, and E. R. Wahl, 2019: A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E. Climate Dyn., 53, 15671580, https://doi.org/10.1007/s00382-019-04696-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cram, T. A., and Coauthors, 2015: The International Surface Pressure Databank version 2. Geosci. Data J., 2, 3146, https://doi.org/10.1002/gdj3.25.

  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eiben, A. E., and J. Smith, 2015: From evolutionary computation to the evolution of things. Nature, 521, 476482, https://doi.org/10.1038/nature14544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falarz, M., 2019: Azores high and Hawaiian high: Correlations, trends and shifts (1948–2018). Theor. Appl. Climatol., 138, 417431, https://doi.org/10.1007/s00704-019-02837-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forrest, S., 1993: Genetic algorithms: Principles of natural selection applied to computation. Science, 261, 872878, https://doi.org/10.1126/science.8346439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franke, J., J. F. González-Rouco, D. Frank, and N. E. Graham, 2011: 200 years of European temperature variability: Insights from and tests of the proxy surrogate reconstruction analog method. Climate Dyn., 37, 133150, https://doi.org/10.1007/s00382-010-0802-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franke, J., S. Brönnimann, J. Bhend, and Y. Brugnara, 2017: A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations. Sci. Data, 4, 170076, https://doi.org/10.1038/sdata.2017.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., D. Barriopedro, D. Gallego, J. Mellado-Cano, D. Wheeler, and C. Wilkinson, 2018: Understanding weather and climate of the last 300 years from ships’ logbooks. Wiley Interdiscip. Rev., 9, e544, https://doi.org/10.1002/wcc.544.

    • Search Google Scholar
    • Export Citation
  • Gómez-Navarro, J. J., J. Werner, S. Wagner, J. Luterbacher, and E. Zorita, 2015: Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments. Climate Dyn., 45, 13951413, https://doi.org/10.1007/s00382-014-2388-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómez-Navarro, J. J., E. Zorita, C. C. Raible, and R. Neukom, 2017: Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era. Climate Past, 13, 629648, https://doi.org/10.5194/cp-13-629-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., C. M. Ammann, D. Fleitmann, K. M. Cobb, and J. Luterbacher, 2011: Support for global climate reorganization during the “Medieval Climate Anomaly”. Climate Dyn., 37, 12171245, https://doi.org/10.1007/s00382-010-0914-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hameed, S., and S. Piontkovski, 2004: The dominant influence of the Icelandic low on the position of the Gulf Stream northwall. Geophys. Res. Lett., 31, L09303, https://doi.org/10.1029/2004GL019561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasanean, H. M., 2004: Variability of the North Atlantic subtropical high and associations with tropical sea-surface temperature. Int. J. Climatol., 24, 945957, https://doi.org/10.1002/joc.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández, A., and Coauthors, 2020: A 2000-year Bayesian NAO reconstruction from the Iberian Peninsula. Sci. Rep., 10, 14961, https://doi.org/10.1038/s41598-020-71372-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hordon, R. M., 1987: Icelandic low. Climatology, Encyclopedia of Earth Science, Springer, https://doi.org/10.1007/0-387-30749-4_92.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841, https://doi.org/10.1016/j.jmarsys.2008.11.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2020: The Climate Data Guide: NCAR sea level pressure. NCAR, accessed 15 December 2020, https://climatedataguide.ucar.edu/climate-data/ncar-sea-level-pressure.

    • Search Google Scholar
    • Export Citation
  • Iqbal, M. J., S. U. Rehman, S. Hameed, and M. A. Qureshi, 2019: Changes in Hadley circulation: The Azores high and winter precipitation over tropical northeast Africa. Theor. Appl. Climatol., 137, 29412948, https://doi.org/10.1007/s00704-019-02765-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaume-Santero, F., D. Barriopedro, R. García-Herrera, N. Calvo, and S. Salcedo-Sanz, 2020: Selection of optimal proxy locations for temperature field reconstructions using evolutionary algorithms. Sci. Rep., 10, 7900, https://doi.org/10.1038/s41598-020-64459-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climate, 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2017: The PMIP4 contribution to CMIP6—Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev., 10, 40054033, https://doi.org/10.5194/gmd-10-4005-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kadow, C., D. M. Hall, and U. Ulbrich, 2020: Artificial intelligence reconstructs missing climate information. Nat. Geosci., 13, 408413, https://doi.org/10.1038/s41561-020-0582-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Küttel, M., and Coauthors, 2010: The importance of ship log data: Reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Climate Dyn., 34, 11151128, https://doi.org/10.1007/s00382-009-0577-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., C. Schmutz, D. Gyalistras, E. Xoplaki, and H. Wanner, 1999: Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys. Res. Lett., 26, 27452748, https://doi.org/10.1029/1999GL900576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., and Coauthors, 2001: Extending North Atlantic Oscillation reconstructions back to 1500. Atmos. Sci. Lett., 2, 114124, https://doi.org/10.1006/asle.2002.0047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., and Coauthors, 2002: Reconstruction of sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Climate Dyn., 18, 545561, https://doi.org/10.1007/s00382-001-0196-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 14991503, https://doi.org/10.1126/science.1093877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado-Cano, J., D. Barriopedro, R. García-Herrera, R. M. Trigo, and A. Hernnández, 2019: Examining the North Atlantic Oscillation, East Atlantic pattern, and jet variability since 1685. J. Climate, 32, 62856298, https://doi.org/10.1175/JCLI-D-19-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noone, S., and Coauthors, 2021: Progress towards a holistic land and marine surface meteorological database and a call for additional contributions. Geosci. Data J., 8, 103120, https://doi.org/10.1002/gdj3.109.

    • Search Google Scholar
    • Export Citation
  • Ortega, P., F. Lehner, D. Swingedouw, V. Masson-Delmotte, C. C. Raible, M. Casado, and P. Yiou, 2015: A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature, 523, 7174, https://doi.org/10.1038/nature14518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., and C. C. Raible, 2012: Past and recent changes in the North Atlantic Oscillation. Wiley Interdiscip. Rev. Climate Change, 3, 7990, https://doi.org/10.1002/wcc.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portis, D. H., J. E. Walsh, M. El Hamly, and P. J. Lamb, 2001: Seasonality of the North Atlantic Oscillation. J. Climate, 14, 20692078, https://doi.org/10.1175/1520-0442(2001)014<2069:SOTNAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riaz, S. M. F., M. J. Iqbal, and S. Hameed, 2017: Impact of the North Atlantic Oscillation on winter climate of Germany. Tellus, 69A, 1406263, https://doi.org/10.1080/16000870.2017.1406263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahsamanoglou, H. S., 1990: A contribution to the study of action centres in the North Atlantic. Int. J. Climatol., 10, 247261, https://doi.org/10.1002/joc.3370100303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salcedo-Sanz, S., 2017: A review on the coral reefs optimization algorithm: New development lines and current applications. Prog. Artif. Intell., 6, 115, https://doi.org/10.1007/s13748-016-0104-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salcedo-Sanz, S., R. García-Herrera, C. Camacho-Gómez, A. Aybar-Ruíz, and E. Alexandre, 2018: Wind power field reconstruction from a reduced set of representative measuring points. Appl. Energy, 228, 11111121, https://doi.org/10.1016/j.apenergy.2018.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salcedo-Sanz, S., R. García-Herrera, C. Camacho-Gómez, E. Alexandre, L. Carro-Calvo, and F. Jaume-Santero, 2019: Near-optimal selection of representative measuring points for robust temperature field reconstruction with the CRO-SL and analogue methods. Global Planet. Change, 178, 1534, https://doi.org/10.1016/j.gloplacha.2019.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., S. Hameed, and R. E. Wilson, 2016: The Icelandic low as a predictor of the Gulf Stream north wall position. J. Phys. Oceanogr., 46, 817826, https://doi.org/10.1175/JPO-D-14-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, A., T. Thordarson, L. D. Oman, A. Robock, and S. Self, 2012: Climatic impact of the long-lasting 1783 Laki eruption: Inapplicability of mass-independent sulfur isotopic composition measurements. J. Geophys. Res., 117, D23116, https://doi.org/10.1029/2012JD018414.

    • Search Google Scholar
    • Export Citation
  • Schmutz, C., J. Luterbacher, D. Gyalistras, E. Xoplaki, and H. Wanner, 2000: Can we trust proxy-based NAO index reconstructions? Geophys. Res. Lett., 27, 11351138, https://doi.org/10.1029/1999GL011045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smerdon, J. E., 2011: Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments. Wiley Interdiscip. Rev. Climate Change, 3, 6377, https://doi.org/10.1002/wcc.149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soto, R., J. A. Gómez-Pulido, S. Caro, and J. M. Lanza-Gutiérrez, 2019: Data science and AI-based optimization in scientific programming. Sci. Program., 2019, 7154765, https://doi.org/10.1155/2019/7154765.

    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., R. M. Trigo, D. Barriopedro, P. M. M. Soares, and J. A. Santos, 2018: European temperature responses to blocking and ridge regional patterns. Climate Dyn., 50, 457477, https://doi.org/10.1007/s00382-017-3620-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, P. M., D. Barriopedro, A. M. Ramos, R. García-Herrera, F. Espírito-Santo, and R. M. Trigo, 2019: Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Wea. Climate Extremes, 26, 100224, https://doi.org/10.1016/j.wace.2019.100224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, P. K., D. Han, M. A. Rico-Ramirez, M. Bray, and T. Islam, 2012: Selection of classification techniques for land use/land cover change investigation. Adv. Space Res., 50, 12501265, https://doi.org/10.1016/j.asr.2012.06.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stothers, R. B., 1996: The great dry fog of 1783. Climatic Change, 32, 7989, https://doi.org/10.1007/BF00141279.

  • Swarnkar, A., and A. Swarnkar, 2019: Artificial intelligence based optimization techniques: A review. Intelligent Computing Techniques for Smart Energy Systems. Lecture Notes in Electrical Engineering, A. Kalam et al., Eds., Springer, 1046 pp.

    • Search Google Scholar
    • Export Citation
  • Talento, S., L. Schneider, J. Werner, and J. Luterbacher, 2019: Millennium-length precipitation reconstruction over south-eastern Asia: A pseudo-proxy approach. Earth Sys. Dyn., 10, 347364, https://doi.org/10.5194/esd-10-347-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thordarson, T., and S. Self, 2003: Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. J. Geophys. Res., 108, 4011, https://doi.org/10.1029/2001JD002042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., D. Pozo-Vázquez, T. J. Osborn, Y. Castro-Díez, S. Gámiz-Fortis, and M. J. Esteban-Parra, 2004: North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol., 24, 925944, https://doi.org/10.1002/joc.1048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaccaro, A., J. Emile-Geay, D. Guillot, R. Verna, C. Morice, J. Kennedy, and B. Rajaratnam, 2021: Climate field completion via Markov random fields—Application to the HadCRUT4.6 temperature dataset. J. Climate, 34, 41694188, https://doi.org/10.1175/JCLI-D-19-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinther, B. M., K. K. Andersen, A. W. Hansen, T. Schmith, and P. D. Jones, 2003: Improving the Gibraltar/Reykjavik NAO index. Geophys. Res. Lett., 30, 2222, https://doi.org/10.1029/2003GL018220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., and B. A. Robinson, 2007: Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Natl. Acad. Sci. USA, 104, 708711, https://doi.org/10.1073/pnas.0610471104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, H., R. Rickli, E. Salvisberg, C. Schmutz, and M. Schüepp, 1997: Global climate change and variability and its influence on Alpine climate—Concepts and observations. Theor. Appl. Climatol., 58, 221243, https://doi.org/10.1007/BF00865022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambri, B., A. Robock, M. J. Mills, and A. Schmidt, 2019: Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts. J. Geophys. Res. Atmos., 124, 67706790, https://doi.org/10.1029/2018JD029554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, https://doi.org/10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 363 356 12
Full Text Views 96 96 12
PDF Downloads 113 113 13

Monthly North Atlantic Sea Level Pressure Reconstruction Back to 1750 CE Using Artificial Intelligence Optimization

Fernando Jaume-SanteroaDepartamento de Ciencias de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain
bInstituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain

Search for other papers by Fernando Jaume-Santero in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8441-3798
,
David BarriopedrobInstituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain

Search for other papers by David Barriopedro in
Current site
Google Scholar
PubMed
Close
,
Ricardo García-HerreraaDepartamento de Ciencias de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain
bInstituto de Geociencias (IGEO), CSIC-UCM, Madrid, Spain

Search for other papers by Ricardo García-Herrera in
Current site
Google Scholar
PubMed
Close
, and
Jürg LuterbachercScience and Innovation Department, World Meteorological Organization, Geneva, Switzerland

Search for other papers by Jürg Luterbacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Main modes of atmospheric variability exert a significant influence on weather and climate at local and regional scales on all time scales. However, their past changes and variability over the instrumental record are not well constrained due to limited availability of observations, particularly over the oceans. Here we couple a reconstruction method with an evolutionary algorithm to yield a new 1° × 1° optimized reconstruction of monthly North Atlantic sea level pressure since 1750 from a network of meteorological land and ocean observations. Our biologically inspired optimization technique finds an optimal set of weights for the observing network that maximizes the reconstruction skill of sea level pressure fields over the North Atlantic Ocean, bringing significant improvements over poorly sampled oceanic regions, as compared to non-optimized reconstructions. It also reproduces realistic variations of regional climate patterns such as the winter North Atlantic Oscillation and the associated variability of the subtropical North Atlantic high and the subpolar low pressure system, including the unprecedented strengthening of the Azores high in the second half of the twentieth century. We find that differences in the winter North Atlantic Oscillation indices are partially explained by disparities in estimates of its Azores high center. Moreover, our reconstruction also shows that displacements of the summer Azores high center toward the northeast coincided with extremely warm events in western Europe including the anomalous summer of 1783. Overall, our results highlight the importance of improving the characterization of the Azores high for understanding the climate of the Euro-Atlantic sector and the added value of artificial intelligence in this avenue.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fernando Jaume-Santero, fjaume@ucm.es

Abstract

Main modes of atmospheric variability exert a significant influence on weather and climate at local and regional scales on all time scales. However, their past changes and variability over the instrumental record are not well constrained due to limited availability of observations, particularly over the oceans. Here we couple a reconstruction method with an evolutionary algorithm to yield a new 1° × 1° optimized reconstruction of monthly North Atlantic sea level pressure since 1750 from a network of meteorological land and ocean observations. Our biologically inspired optimization technique finds an optimal set of weights for the observing network that maximizes the reconstruction skill of sea level pressure fields over the North Atlantic Ocean, bringing significant improvements over poorly sampled oceanic regions, as compared to non-optimized reconstructions. It also reproduces realistic variations of regional climate patterns such as the winter North Atlantic Oscillation and the associated variability of the subtropical North Atlantic high and the subpolar low pressure system, including the unprecedented strengthening of the Azores high in the second half of the twentieth century. We find that differences in the winter North Atlantic Oscillation indices are partially explained by disparities in estimates of its Azores high center. Moreover, our reconstruction also shows that displacements of the summer Azores high center toward the northeast coincided with extremely warm events in western Europe including the anomalous summer of 1783. Overall, our results highlight the importance of improving the characterization of the Azores high for understanding the climate of the Euro-Atlantic sector and the added value of artificial intelligence in this avenue.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fernando Jaume-Santero, fjaume@ucm.es

Supplementary Materials

    • Supplemental Materials (PDF 2.66 MB)
Save