The Simulated Atmospheric Response to Western North Pacific Sea Surface Temperature Anomalies

Simchan Yook aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Simchan Yook in
Current site
Google Scholar
PubMed
Close
,
David W. J. Thompson aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David W. J. Thompson in
Current site
Google Scholar
PubMed
Close
,
Lantao Sun aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Lantao Sun in
Current site
Google Scholar
PubMed
Close
, and
Casey Patrizio aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Casey Patrizio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations reveal two distinct patterns of atmospheric variability associated with wintertime variations in midlatitude sea surface temperatures (SSTs) in the North Pacific sector: 1) a pattern of atmospheric circulation anomalies that peaks 2–3 weeks prior to large SST anomalies in the western North Pacific that is consistent with “atmospheric forcing” of the SST field, and 2) a pattern that lags SST anomalies in the western North Pacific by several weeks that is consistent with the “atmospheric response” to the SST field. Here we explore analogous lead–lag relations between the atmospheric circulation and western North Pacific SST anomalies in two sets of simulations run on the NCAR Community Earth System Model version 1 (CESM1): 1) a simulation run on a fully coupled version of CESM1 and 2) a simulation forced with prescribed, time-evolving SST anomalies over the western North Pacific region. Together, the simulations support the interpretation that the observed lead–lag relationships between western North Pacific SST anomalies and the atmospheric circulation reveal the patterns of atmospheric variability that both force and respond to midlatitude SST anomalies. The results provide numerical evidence that SST variability over the western North Pacific has a demonstrable effect on the large-scale atmospheric circulation throughout the North Pacific sector.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simchan Yook, simchan.yook@colostate.edu

Abstract

Observations reveal two distinct patterns of atmospheric variability associated with wintertime variations in midlatitude sea surface temperatures (SSTs) in the North Pacific sector: 1) a pattern of atmospheric circulation anomalies that peaks 2–3 weeks prior to large SST anomalies in the western North Pacific that is consistent with “atmospheric forcing” of the SST field, and 2) a pattern that lags SST anomalies in the western North Pacific by several weeks that is consistent with the “atmospheric response” to the SST field. Here we explore analogous lead–lag relations between the atmospheric circulation and western North Pacific SST anomalies in two sets of simulations run on the NCAR Community Earth System Model version 1 (CESM1): 1) a simulation run on a fully coupled version of CESM1 and 2) a simulation forced with prescribed, time-evolving SST anomalies over the western North Pacific region. Together, the simulations support the interpretation that the observed lead–lag relationships between western North Pacific SST anomalies and the atmospheric circulation reveal the patterns of atmospheric variability that both force and respond to midlatitude SST anomalies. The results provide numerical evidence that SST variability over the western North Pacific has a demonstrable effect on the large-scale atmospheric circulation throughout the North Pacific sector.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simchan Yook, simchan.yook@colostate.edu
Save
  • Alexander, M., 2010: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 148 pp.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., S. Yeager, Y.-O. Kwon, A. Bellucci, D. W. Smith, and S. Tibaldi, 2020: Decadal predictability of North Atlantic blocking and the NAO. npj Climate Atmos. Sci., 3, 20, https://doi.org/10.1038/s41612-020-0120-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27, 767770, https://doi.org/10.1029/1999GL010910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. Schlax, M. Freilich, and R. Milliff, 2004: Satellite radar measurements reveal short-scale features in the wind stress field over the world ocean. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. Thompson, 2004: North Atlantic atmosphere–ocean interaction on intraseasonal time scales. J. Climate, 17, 16171621, https://doi.org/10.1175/1520-0442(2004)017<1617:NAAIOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., C. Frankignoul, S. Minobe, and B. Vannière, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air–sea interactions? Curr. Climate Change Rep., 5, 390406, https://doi.org/10.1007/s40641-019-00148-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, https://doi.org/10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, https://doi.org/10.1029/RG023i004p00357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606, https://doi.org/10.1175/JCLI4021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, https://doi.org/10.1175/2010JCLI3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14, 20352053, https://doi.org/10.1175/1520-0442(2001)014<2035:TESGBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. Robinson, I. Bladé, N. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 98399859, https://doi.org/10.1175/JCLI-D-12-00647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, https://doi.org/10.1175/2010JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., C. Deser, and C. Cassou, 2011: Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Climate Dyn., 36, 22952312, https://doi.org/10.1007/s00382-010-0764-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., H. Seo, C. C. Ummenhofer, and T. M. Joyce, 2020: Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking. J. Climate, 33, 867892, https://doi.org/10.1175/JCLI-D-19-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7, 11841207, https://doi.org/10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 18611880, https://doi.org/10.1175/JCLI-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, https://doi.org/10.1175/2010JCLI3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr., Vol. 147, 329345.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, https://doi.org/10.1175/JCLI3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 5266, https://doi.org/10.1002/qj.2334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., S. Minobe, A. Kuwano‐Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173183, https://doi.org/10.1002/qj.2907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14, 29432959, https://doi.org/10.1175/1520-0442(2001)014<2943:RBAIVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987, https://doi.org/10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Révelard, A., C. Frankignoul, N. Sennéchael, Y.-O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Climate, 29, 21232144, https://doi.org/10.1175/JCLI-D-15-0511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulière, J., D. J. Brayshaw, B. Hoskins, and M. Blackburn, 2012: Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci., 69, 840856, https://doi.org/10.1175/JAS-D-11-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., S. G. Yeager, K. A. McKinnon, and C. Deser, 2019: Decadal predictability of late winter precipitation in Western Europe through an ocean–jet stream connection. Nat. Geosci., 12, 613619, https://doi.org/10.1038/s41561-019-0391-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, L., and B. P. Kirtman, 2016: Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett., 43, 39643972, https://doi.org/10.1002/2016GL068694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2014a: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, https://doi.org/10.1002/2014MS000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014b: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, https://doi.org/10.1007/s00382-013-1980-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, F. O. Bryan, and S. P. Bishop, 2019: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? J. Climate, 32, 23972421, https://doi.org/10.1175/JCLI-D-18-0576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, S. Larson, and R. A. Tomas, 2020: What drives upper-ocean temperature variability in coupled climate models and observations? J. Climate, 33, 577596, https://doi.org/10.1175/JCLI-D-19-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, https://doi.org/10.1175/JCLI-D-14-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate, 25, 111139, https://doi.org/10.1175/JCLI-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, L. A., and Y. Kwon, 2010: An enhancement of low-frequency variability in the Kuroshio–Oyashio extension in CCSM3 owing to ocean model biases. J. Climate, 23, 62216233, https://doi.org/10.1175/2010JCLI3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 946 pp.

  • Wang, Q., S.-P. Zhang, S.-P. Xie, J. R. Norris, J.-X. Sun, and Y.-X. Jiang, 2019: Observed variations of the atmospheric boundary layer and stratocumulus over a warm eddy in the Kuroshio Extension. Mon. Wea. Rev., 147, 15811591, https://doi.org/10.1175/MWR-D-18-0381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, S. M., and D. W. Thompson, 2018: On the observed relationships between wintertime variability in Kuroshio–Oyashio Extension sea surface temperatures and the atmospheric circulation over the North Pacific. J. Climate, 31, 46694681, https://doi.org/10.1175/JCLI-D-17-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, S. M., D. W. Thompson, and L. M. Ciasto, 2016: On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic. J. Climate, 29, 37193730, https://doi.org/10.1175/JCLI-D-15-0820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, D. Hassell, and K. Hodges, 2010: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341353, https://doi.org/10.1007/s00382-009-0554-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., H. Tokinaga, and S.-P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate, 23, 47044715, https://doi.org/10.1175/2010JCLI3267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, G., M. Latif, R. J. Greatbatch, and W. Park, 2015: Atmospheric response to the North Pacific enabled by daily sea surface temperature variability. Geophys. Res. Lett., 42, 77327739, https://doi.org/10.1002/2015GL065356.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 445 110 0
Full Text Views 283 147 7
PDF Downloads 297 143 4