Effective ENSO Amplitude Forecasts Based on Oceanic and Atmospheric Preconditions

Zhuolin Xuan aCIC-FEMD/ILCEC, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Zhuolin Xuan in
Current site
Google Scholar
PubMed
Close
,
Wenjun Zhang aCIC-FEMD/ILCEC, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Wenjun Zhang in
Current site
Google Scholar
PubMed
Close
,
Feng Jiang aCIC-FEMD/ILCEC, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Feng Jiang in
Current site
Google Scholar
PubMed
Close
, and
Fei-Fei Jin bDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Fei-Fei Jin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Current climate models have relatively high skills in predicting El Niño–Southern Oscillation (ENSO) phase (i.e., El Niño, neutral, and La Niña), once leaping over the spring predictability barrier. However, it is still a big challenge to realistically forecast the ENSO amplitude, for instance, whether a predicted event will be strong, moderate, or weak. Here we demonstrate that the accumulated westerly wind events (WWEs)/easterly wind surges (EWSs) and oceanic recharged/discharged states are both of importance in accurate ENSO amplitude forecasts. El Niño and La Niña events exhibit asymmetric temporal and spatial features in the atmospheric and oceanic preconditions. El Niño amplitude at the peak season is closely associated with the accumulated WWEs over the eastern equatorial Pacific from the previous December to May and the recharged state in the western equatorial Pacific during February. In contrast, the amplitude of La Niña events is sensitive to the accumulated EWSs over the equatorial western Pacific from the previous November to April and the discharged state extending from the equatorial western to central Pacific during February. Considering these asymmetric atmospheric and oceanic preconditions of El Niño and La Niña cases, a statistical model is established to accurately forecast the ENSO amplitude at its mature phase during 1982–2018, which is validated to be robust based on a 1-yr cross-validation and independent sample tests. The feasibility and the limitation of the established statistical model are also discussed by examining its practical utility.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenjun Zhang, zhangwj@nuist.edu.cn

Abstract

Current climate models have relatively high skills in predicting El Niño–Southern Oscillation (ENSO) phase (i.e., El Niño, neutral, and La Niña), once leaping over the spring predictability barrier. However, it is still a big challenge to realistically forecast the ENSO amplitude, for instance, whether a predicted event will be strong, moderate, or weak. Here we demonstrate that the accumulated westerly wind events (WWEs)/easterly wind surges (EWSs) and oceanic recharged/discharged states are both of importance in accurate ENSO amplitude forecasts. El Niño and La Niña events exhibit asymmetric temporal and spatial features in the atmospheric and oceanic preconditions. El Niño amplitude at the peak season is closely associated with the accumulated WWEs over the eastern equatorial Pacific from the previous December to May and the recharged state in the western equatorial Pacific during February. In contrast, the amplitude of La Niña events is sensitive to the accumulated EWSs over the equatorial western Pacific from the previous November to April and the discharged state extending from the equatorial western to central Pacific during February. Considering these asymmetric atmospheric and oceanic preconditions of El Niño and La Niña cases, a statistical model is established to accurately forecast the ENSO amplitude at its mature phase during 1982–2018, which is validated to be robust based on a 1-yr cross-validation and independent sample tests. The feasibility and the limitation of the established statistical model are also discussed by examining its practical utility.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenjun Zhang, zhangwj@nuist.edu.cn
Save
  • An, S.-I., and J.-W. Kim, 2018: ENSO transition asymmetry: Internal and external causes and intermodel diversity. Geophys. Res. Lett., 45, 50955104, https://doi.org/10.1029/2018GL078476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and E. S. Sarachik, 1995: Understanding and predicting ENSO. Rev. Geophys., 33, 13671376, https://doi.org/10.1029/95RG00933.

  • Behringer, D., and Y. Xue, 2004: Evaluation of the Global Ocean Data Assimilation system at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Washington, DC, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosc, C., and T. Delcroix, 2008: Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean. J. Geophys. Res., 113, C06003, https://doi.org/10.1029/2007JC004613.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J.-P., and Coauthors, 2001: Role of non-linear oceanic processes in the response to westerly wind events: New implications for the 1997 El Niño onset. Geophys. Res. Lett., 28, 16031606, https://doi.org/10.1029/2000GL012364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Phys. Oceanogr., 44, 13721385, https://doi.org/10.1175/JPO-D-13-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., M. Münnich, and S. F. Zebiak, 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis. J. Atmos. Sci., 47, 15621577, https://doi.org/10.1175/1520-0469(1990)047<1562:ASOSEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, and L. Ricciardulli, 2018: The nature of the stochastic wind forcing of ENSO. J. Climate, 31, 80818099, https://doi.org/10.1175/JCLI-D-17-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. E. Erickson, and K. M. Lau, 1979: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107, 812829, https://doi.org/10.1175/1520-0493(1979)107<0812:NCSANE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 16991702, https://doi.org/10.1126/science.269.5231.1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, https://doi.org/10.1038/nature02439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., Y.-H. Tseng, Z.-Z. Hu, and R. Ding, 2020: Enhancing the ENSO predictability beyond the spring barrier. Sci. Rep., 10, 984, https://doi.org/10.1038/s41598-020-57853-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 Super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., T. Li, X. Shen, and B. Wu, 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate, 29, 22012220, https://doi.org/10.1175/JCLI-D-15-0547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., 2019: Diagnosing and predicting ENSO SSTA development from moored-buoy and scatterometer winds. J. Climate, 32, 87558770, https://doi.org/10.1175/JCLI-D-19-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, https://doi.org/10.1175/JCLI-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian Oscillation and westerly wind events. J. Climate, 27, 36193642, https://doi.org/10.1175/JCLI-D-13-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. V. Gorder, 2003: Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30, 1399, https://doi.org/10.1029/2002GL016673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, S.-W., and J.-Y. Yu, 2020: Contrasting transition complexity between El Niño and La Niña: Observations and CMIP5/6 models. Geophys. Res. Lett., 47, e2020GL088926, https://doi.org/10.1029/2020GL088926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, X.-H., and M. Mu, 2018: Both air-sea components are crucial for El Niño forecast from boreal spring. Sci. Rep., 8, 10501, https://doi.org/10.1038/s41598-018-28964-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, and F.-F. Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Niño events. Sci. Rep., 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and J. Shukla, 1991: Predictability of a coupled ocean-atmosphere model. J. Climate, 4, 322, https://doi.org/10.1175/1520-0442(1991)004<0003:POACOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17, 46234629, https://doi.org/10.1175/JCLI-3260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96, 32213237, https://doi.org/10.1029/90JC01775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., 1996: Synoptic settings of westerly wind bursts. J. Geophys. Res., 101, 16 99717 019, https://doi.org/10.1029/96JD00030.

  • Hayashi, M., and M. Watanabe, 2016: Asymmetry of westerly and easterly wind events: Observational evidence. SOLA, 12, 4245, https://doi.org/10.2151/sola.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E. Lim, G. Wang, O. Alves, and D. Hudson, 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713, https://doi.org/10.1029/2009GL040100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Hoerling, J. Eischeid, K. Wolter, R. Dole, J. Perlwitz, T. Xu, and L. Cheng, 2016: Does El Niño intensity matter for California precipitation? Geophys. Res. Lett., 43, 819825, https://doi.org/10.1002/2015GL067102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s: Decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett., 39, 10707, https://doi.org/10.1029/2012GL051740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton, 2019: On the physical interpretation of the lead relation between warm water volume and the El Niño Southern Oscillation. Climate Dyn., 52, 29232942, https://doi.org/10.1007/s00382-018-4313-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keen, R. A., 1982: The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation. Mon. Wea. Rev., 110, 14051416, https://doi.org/10.1175/1520-0493(1982)110<1405:TROCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753767, https://doi.org/10.1175/1520-0469(1997)054<0753:ATFTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, A. W.-C., M. Herzog, and H.-F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and western Pacific subsurface potential temperature. Climate Dyn., 45, 34613480, https://doi.org/10.1007/s00382-015-2550-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, A. W.-C., M. Herzog, and H.-F. Graf, 2018: ENSO forecasts near the spring predictability barrier and possible reasons for the recently reduced predictability. J. Climate, 31, 815838, https://doi.org/10.1175/JCLI-D-17-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1990: Evolution of the cloud pattern during the formation of tropical cyclone twins symmetrical with respect to the equator. Mon. Wea. Rev., 118, 11941202, https://doi.org/10.1175/1520-0493(1990)118<1194:EOTCPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393, https://doi.org/10.1029/97JC03413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and J. Slingo, 2003: The March 1997 westerly wind event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16, 33303343, https://doi.org/10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, P. Delecluse, and J. Slingo, 2004: Westerly wind events in the tropical Pacific and their influence on the coupled ocean-atmosphere system: A review. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, American Geophysical Union, 4969.

    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, and Q. Wu, 2014: Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett., 41, 35223527, https://doi.org/10.1002/2014GL059989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y., A. V. Fedorov, and P. Haertel, 2021: Intensification of westerly wind bursts caused by the coupling of the Madden–Julian Oscillation to SST during El Niño onset and development. Geophys. Res. Lett., 48, e2020GL089395, https://doi.org/10.1029/2020GL089395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, G., 1985: Cross-equatorial interactions during tropical cyclogenesis. Mon. Wea. Rev., 113, 14991509, https://doi.org/10.1175/1520-0493(1985)113<1499:CEIDTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, D. S., D. E. Harrison, and R. A. Knox, 1983: Zonal winds in the central equatorial Pacific and El Niño. Science, 222, 327330, https://doi.org/10.1126/science.222.4621.327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., 2004: The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett., 31, L21204, https://doi.org/10.1029/2004GL020901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and A. G. Barnston, 2005: ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J. Climate, 18, 50955109, https://doi.org/10.1175/JCLI3598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, https://doi.org/10.1029/2003GL016872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1989: Development of a twin cyclone and westerly bursts during the initial phase of the 1986–87 El Niño. J. Meteor. Soc. Japan, 67, 677681, https://doi.org/10.2151/jmsj1965.67.4_677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348, https://doi.org/10.2151/jmsj.85.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2009: Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22, 177192, https://doi.org/10.1175/2008JCLI2334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45, 98249833, https://doi.org/10.1029/2018GL079341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345, https://doi.org/10.1175/MWR3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., and J. Su, 2020: A statistical comparison of the westerly wind bursts between the positive and negative phases of the PDO. J. Meteor. Res., 34, 315324, https://doi.org/10.1007/s13351-020-9115-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., B. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 90589064, https://doi.org/10.1002/2014GL062380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., M. Ranganathan, M. L’Heureux, A. G. Barnston, and T. DelSole, 2019: Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble. Climate Dyn., 53, 74977518, https://doi.org/10.1007/s00382-017-3721-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y., Z.-Z. Hu, R. Ding, and H. Chen, 2017: An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Climate Dyn., 48, 20252044, https://doi.org/10.1007/s00382-016-3188-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., 2006: The termination of the 1997–98 El Niño. Part II: Mechanisms of atmospheric change. J. Climate, 19, 26472664, https://doi.org/10.1175/JCLI3780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830, https://doi.org/10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969, https://doi.org/10.1175/2010WAF2222345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562, https://doi.org/10.1175/2010JCLI3878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 25112539, https://doi.org/10.1007/s00382-010-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, S., and A. V. Fedorov, 2020: The role of westerly wind bursts during different seasons versus ocean heat recharge in the development of extreme El Niño in climate models. Geophys. Res. Lett., 47, e2020GL088381, https://doi.org/10.1029/2020GL088381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Li, and F.-F. Jin, 2009: Spatial and temporal features of ENSO meridional scales. Geophys. Res. Lett., 36, L15605, https://doi.org/10.1029/2009GL038672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., S. Li, F.-F. Jin, R. Xie, C. Liu, M. F. Stuecker, and A. Xue, 2019: ENSO regime changes responsible for decadal phase relationship variations between ENSO sea surface temperature and warm water volume. Geophys. Res. Lett., 46, 75467553, https://doi.org/10.1029/2019GL082943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., F.-F. Jin, and M. F. Stuecker, 2021: Understanding lead times of warm water volumes to ENSO sea surface temperature anomalies. Geophys. Res. Lett., 48, e2021GL094366, https://doi.org/10.1029/2021GL094366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, https://doi.org/10.1029/2012GL051503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, W. Wang, Z.-Z. Hu, B. Huang, and M. A. Balmaseda, 2017: Importance of convective parameterization in ENSO predictions. Geophys. Res. Lett., 44, 63346342, https://doi.org/10.1002/2017GL073669.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1157 730 0
Full Text Views 542 410 107
PDF Downloads 377 201 13