• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., A. Mariotti, and S. Gualdi, 2017: The role of forcings in the twentieth-century North Atlantic multidecadal variability: The 1940–75 North Atlantic cooling case study. J. Climate, 30, 73177337, https://doi.org/10.1175/JCLI-D-16-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Atmos. Sci., 47, 629649, https://doi.org/10.1175/1520-0469(1990)047<0629:LFPIBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, https://doi.org/10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and F. Selten, 2009: “Modes of variability” and climate change. J. Climate, 22, 26392658, https://doi.org/10.1175/2008JCLI2517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1994: Dynamical decomposition of low-frequency tendencies. J. Atmos. Sci., 51, 20862100, https://doi.org/10.1175/1520-0469(1994)051<2086:DDOLFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, A. H., M. E. Mann, B. A. Steinman, L. M. Frankcombe, M. H. England, and S. K. Miller, 2017: Comparison of low-frequency internal climate variability in CMIP5 models and observations. J. Climate, 30, 47634776, https://doi.org/10.1175/JCLI-D-16-0712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., and Coauthors, 2012: The contribution of anthropogenic forcings to regional changes in temperature during the last decade. Climate Dyn., 39, 12591274, https://doi.org/10.1007/s00382-011-1184-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., G. S. Jones, and P. A. Stott, 2015: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Climate Change, 5, 4650, https://doi.org/10.1038/nclimate2468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowan, T., and Coauthors, 2020: Ocean and land forcing of the record-breaking Dust Bowl heatwaves across central United States. Nat. Commun., 11, 2870, https://doi.org/10.1038/s41467-020-16676-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2018: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375392, https://doi.org/10.1175/JHM-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. J. Pitman, and S. I. Seneviratne, 2017: Regional warming of hot extremes accelerated by surface energy fluxes. Geophys. Res. Lett., 44, 70117019, https://doi.org/10.1002/2017GL073733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., R. T. Sutton, and L. Shaffrey, 2017: Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dyn., 48, 15371554, https://doi.org/10.1007/s00382-016-3158-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdenebat, E., and T. Sato, 2016: Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos. Sci. Lett., 17, 135140, https://doi.org/10.1002/asl.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., and L. Wu, 2021: The contribution of internal variability to Asia midlatitude warming. J. Climate, 34, 24292439, https://doi.org/10.1175/JCLI-D-20-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interaction during the 2003 European summer heat waves. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Johnson, N. C., S.-P. Xie, Y. Kosaka, and X. Li, 2018: Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun., 9, 1724, https://doi.org/10.1038/s41467-018-04040-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., D. J. Amaya, Q. Ding, Y. Kosaka, H. Tokinaga, and S.-P. Xie, 2020: Multidecadal modulations of key metrics of global climate change. Global Planet. Change, 188, 103149, https://doi.org/10.1016/j.gloplacha.2020.103149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., and Coauthors, 2017: Forced response and internal variability of summer climate over western North America. Climate Dyn., 49, 403417, https://doi.org/10.1007/s00382-016-3350-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., 2017: Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century. Geophys. Res. Lett., 44, 57495757, https://doi.org/10.1002/2017GL074016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 33693387, https://doi.org/10.1007/s00382-018-4083-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, I. R. Simpson, and L. Terray, 2018: Attributing the US Southwest’s recent shift into drier conditions. Geophys. Res. Lett., 45, 62516261, https://doi.org/10.1029/2018GL078312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026, https://doi.org/10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenssen, H., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 63076326, https://doi.org/10.1029/2018JD029522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liguori, G., S. McGregor, J. M. Arblaster, M. S. Singh, and G. A. Meehl, 2020: A joint role for forced and internally driven variability in the decadal modulation of global warming. Nat. Commun., 11, 3827, https://doi.org/10.1038/s41467-020-17683-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, and S. K. Miller, 2020: Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun., 11, 49, https://doi.org/10.1038/s41467-019-13823-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, D. J. Brouillette, and S. K. Miller, 2021: Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371, 10141019, https://doi.org/10.1126/science.abc5810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, https://doi.org/10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., J. Robson, B. Dong, and D. Hodson, 2021: Role of the Atlantic multidecadal variability in modulating East Asian climate. Climate Dyn., 56, 381398, https://doi.org/10.1007/s00382-020-05477-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr., Vol. 147, 329345, https://doi.org/10.1029/147GM18.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., A. Isobe, S. Minobe, H. Mitsudera, M. Nonaka, and T. Suga, 2015: “Hot spots” in the climate system-new developments in the extratropical ocean–atmosphere interaction research: A short review and an introduction. J. Oceanogr., 71, 463467, https://doi.org/10.1007/s10872-015-0321-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., and P. D. Jones, 2014: The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data, 6, 6168, https://doi.org/10.5194/essd-6-61-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwave. Nat. Commun., 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruggieri, P., and Coauthors, 2021: Atlantic multidecadal variability and North Atlantic jet: A multimodel view from the decadal climate prediction project. J. Climate, 34, 347360, https://doi.org/10.1175/JCLI-D-19-0981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 36793700, https://doi.org/10.1175/JCLI-D-17-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean midlatitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Climate, 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2020: North Atlantic climate far more predictable than models imply. Nature, 583, 796800, https://doi.org/10.1038/s41586-020-2525-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and Coauthors, 2022: Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat Commun., 13, 1288, https://doi.org/10.1038/s41467-022-28911-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., G. D. McCarthy, J. Robson, B. Sinha, A. T. Archibald, and L. J. Gray, 2018: Atlantic multidecadal variability and the U.K. ACSIS. Bull. Amer. Meteor. Soc., 99, 415425, https://doi.org/10.1175/BAMS-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the boreal summer. Curr. Climate Change Rep., 5, 421432, https://doi.org/10.1007/s40641-019-00150-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 45254545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, https://doi.org/10.1029/2012GL053046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, and H. Mukougawa, 2017: Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA, 114, 62276232, https://doi.org/10.1073/pnas.1615880114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos., 117, D17103, https://doi.org/10.1029/2012JD018020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., R. H. White, and X. J. Levine, 2019: Northern Hemisphere stationary waves in a changing climate. Curr. Climate Change Rep., 5, 372389, https://doi.org/10.1007/s40641-019-00147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Lau, W. Tao, and Z. Li, 2020: Large wildfires in the western United States exacerbated by tropospheric drying linked to a multi-decadal trend in the expansion of the Hadley circulation. Geophys. Res. Lett., 47, e2020GL087811, https://doi.org/10.1029/2020GL087911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 246 237 24
Full Text Views 140 139 33
PDF Downloads 187 186 29

Warming Pattern over the Northern Hemisphere Midlatitudes in Boreal Summer 1979–2020

View More View Less
  • 1 aPacific Northwest National Laboratory, Richland, Washington
  • | 2 bNational Center for Atmospheric Research, Boulder, Colorado
  • | 3 cDepartment of Geography, and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California
Restricted access

Abstract

Significant surface air temperature warming during summer 1979–2020 is not uniformly distributed in the northern midlatitudes over land but rather is confined to several longitudinal sectors including Europe, central Siberia and Mongolia, and both coasts of North America. These hot spots are accompanied by a chain of high pressure ridges from an anomalous, circumglobal Rossby wave train in the upper troposphere. From reanalysis data and several baseline experiments from phase 6 of the Coupled Model Intercomparison Project (CMIP6), we find that the circulation trend pattern is associated with fluctuations of the Atlantic multidecadal variability (AMV) and the interdecadal Pacific oscillation. The phase shift of AMV in the 1990s is particularly noteworthy for accelerating warming averaged over the northern midlatitude land. The amplitude of the observed trend in both surface air temperature and the upper-level geopotential height generally falls beyond the range of multidecadal trends simulated by the CMIP6 preindustrial control runs, supporting the likelihood that anthropogenic forcing played a critical role in the observed trend. On the other hand, the fidelity of the simulated low-frequency modes of variability and their teleconnections, especially on multidecadal time scales, is difficult to assess because of the relatively short observational records. Our mechanistic modeling results indicate that synoptic eddy–mean flow interaction is a key to the formation of the anomalous wave train but how the multidecadal modes can modulate the synoptic eddies through atmosphere–ocean and atmosphere–land interactions remains poorly understood. This gap in our knowledge makes it challenging to quantify the roles of the low-frequency modes and external forcings in causing the observed multidecadal trends.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haiyan Teng, haiyan.teng@pnnl.gov

Abstract

Significant surface air temperature warming during summer 1979–2020 is not uniformly distributed in the northern midlatitudes over land but rather is confined to several longitudinal sectors including Europe, central Siberia and Mongolia, and both coasts of North America. These hot spots are accompanied by a chain of high pressure ridges from an anomalous, circumglobal Rossby wave train in the upper troposphere. From reanalysis data and several baseline experiments from phase 6 of the Coupled Model Intercomparison Project (CMIP6), we find that the circulation trend pattern is associated with fluctuations of the Atlantic multidecadal variability (AMV) and the interdecadal Pacific oscillation. The phase shift of AMV in the 1990s is particularly noteworthy for accelerating warming averaged over the northern midlatitude land. The amplitude of the observed trend in both surface air temperature and the upper-level geopotential height generally falls beyond the range of multidecadal trends simulated by the CMIP6 preindustrial control runs, supporting the likelihood that anthropogenic forcing played a critical role in the observed trend. On the other hand, the fidelity of the simulated low-frequency modes of variability and their teleconnections, especially on multidecadal time scales, is difficult to assess because of the relatively short observational records. Our mechanistic modeling results indicate that synoptic eddy–mean flow interaction is a key to the formation of the anomalous wave train but how the multidecadal modes can modulate the synoptic eddies through atmosphere–ocean and atmosphere–land interactions remains poorly understood. This gap in our knowledge makes it challenging to quantify the roles of the low-frequency modes and external forcings in causing the observed multidecadal trends.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haiyan Teng, haiyan.teng@pnnl.gov
Save