Spatial and Seasonal Isotope Variability in Precipitation across China: Monthly Isoscapes Based on Regionalized Fuzzy Clustering

Shengjie Wang aCollege of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
bKey Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou, China

Search for other papers by Shengjie Wang in
Current site
Google Scholar
PubMed
Close
,
Shijun Lei aCollege of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
bKey Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou, China

Search for other papers by Shijun Lei in
Current site
Google Scholar
PubMed
Close
,
Mingjun Zhang aCollege of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
bKey Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou, China

Search for other papers by Mingjun Zhang in
Current site
Google Scholar
PubMed
Close
,
Catherine Hughes cAustralian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales, Australia

Search for other papers by Catherine Hughes in
Current site
Google Scholar
PubMed
Close
,
Jagoda Crawford cAustralian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales, Australia

Search for other papers by Jagoda Crawford in
Current site
Google Scholar
PubMed
Close
,
Zhongfang Liu dState Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Search for other papers by Zhongfang Liu in
Current site
Google Scholar
PubMed
Close
, and
Deye Qu aCollege of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
bKey Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou, China

Search for other papers by Deye Qu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial patterns of stable hydrogen and oxygen isotopes in precipitation (precipitation isoscapes) provide a geographic perspective to understand the atmospheric processes in modern environment and paleoclimate records. Here we compiled stable isotope data in modern precipitation at 223 sites across China and 48 in surrounding countries, and used regionalized fuzzy clustering to create monthly precipitation isoscapes for China (C-Isoscape). Based on regressions using spatial and climatic parameters for 12 months, the best-fitting equations were chosen for four climate clusters, and then the four layers were weighted using fuzzy membership. The moisture transportation path, controlled by the westerlies and the monsoon, results in different spatial and seasonal diversity of precipitation isotopes. Based on C-Isoscape, we determined a nationwide meteoric water line as δ2H = 7.4δ18O + 5.5 using least squares regression or δ2H = 8.0δ18O + 10.2 using precipitation weighted reduced major axis regression. Compared with previous global products, the C-Isoscape usually shows precipitation more enriched in 18O and 2H in summer and more depleted in winter for northwest China, while the C-Isoscape values are more enriched in heavy isotopes in most months for southwest China. The new monthly precipitation isoscapes provide an accurate and high-resolution mapping for Chinese precipitation isotopes, allowing for future intra-annual atmospheric process diagnostics using stable hydrogen and oxygen isotope in precipitation in the region.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mingjun Zhang, mjzhang2004@163.com

Abstract

The spatial patterns of stable hydrogen and oxygen isotopes in precipitation (precipitation isoscapes) provide a geographic perspective to understand the atmospheric processes in modern environment and paleoclimate records. Here we compiled stable isotope data in modern precipitation at 223 sites across China and 48 in surrounding countries, and used regionalized fuzzy clustering to create monthly precipitation isoscapes for China (C-Isoscape). Based on regressions using spatial and climatic parameters for 12 months, the best-fitting equations were chosen for four climate clusters, and then the four layers were weighted using fuzzy membership. The moisture transportation path, controlled by the westerlies and the monsoon, results in different spatial and seasonal diversity of precipitation isotopes. Based on C-Isoscape, we determined a nationwide meteoric water line as δ2H = 7.4δ18O + 5.5 using least squares regression or δ2H = 8.0δ18O + 10.2 using precipitation weighted reduced major axis regression. Compared with previous global products, the C-Isoscape usually shows precipitation more enriched in 18O and 2H in summer and more depleted in winter for northwest China, while the C-Isoscape values are more enriched in heavy isotopes in most months for southwest China. The new monthly precipitation isoscapes provide an accurate and high-resolution mapping for Chinese precipitation isotopes, allowing for future intra-annual atmospheric process diagnostics using stable hydrogen and oxygen isotope in precipitation in the region.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mingjun Zhang, mjzhang2004@163.com

Supplementary Materials

    • Supplemental Materials (PDF 2.44 MB)
Save
  • Acharya, S., X. Yang, T. Yao, and D. Shrestha, 2020: Stable isotopes of precipitation in Nepal Himalaya highlight the topographic influence on moisture transport. Quat. Int., 565, 2230, https://doi.org/10.1016/j.quaint.2020.09.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adhikari, N., J. Gao, T. Yao, Y. Yang, and D. Dai, 2020: The main controls of the precipitation stable isotopes at Kathmandu, Nepal. Tellus, 72B, 1445379, https://doi.org/10.1080/16000889.2020.1721967.

    • Search Google Scholar
    • Export Citation
  • Allen, S. T., J. W. Kirchner, and G. R. Goldsmith, 2018: Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinusoidal isoscapes. Geophys. Res. Lett., 45, 48594868, https://doi.org/10.1029/2018GL077458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Araguás-Araguás, L., K. Froehlich, and K. Rozanski, 1998: Stable isotope composition of precipitation over Southeast Asia. J. Geophys. Res., 103, 28 72128 742, https://doi.org/10.1029/98JD02582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., and B. H. Wilkinson, 2002: Spatial distribution of δ18O in meteoric precipitation. Geology, 30, 315318, https://doi.org/10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., and J. Revenaugh, 2003: Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res., 39, 1299, https://doi.org/10.1029/2003WR002086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., and S. P. Good, 2015: Incorporating water isoscapes in hydrological and water resource investigations. Wiley Interdiscip. Rev.: Water, 2, 107119, https://doi.org/10.1002/wat2.1069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., L. I. Wassenaar, and K. A. Hobson, 2005: Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, 143, 337348, https://doi.org/10.1007/s00442-004-1813-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., J. S. Guo, and S. T. Allen, 2022: A 3-D groundwater isoscape of the contiguous USA for forensic and water resource science. PLOS ONE, 17, e0261651, https://doi.org/10.1371/journal.pone.0261651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnik Šturm, M., O. Ganbaatar, C. C. Voigt, and P. Kaczensky, 2017: First field-based observations of δ2H and δ18O values of event-based precipitation, rivers and other water bodies in the Dzungarian Gobi, SW Mongolia. Isotopes Environ. Health Stud., 53, 157171, https://doi.org/10.1080/10256016.2016.1231184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Z., and L. Tian, 2016: Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. J. Climate, 29, 13391352, https://doi.org/10.1175/JCLI-D-15-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C. J., and T. Y. Li, 2018: Geochemical characteristics of cave drip water respond to ENSO based on a 6-year monitoring work in Yangkou Cave, Southwest China. J. Hydrol., 561, 896907, https://doi.org/10.1016/j.jhydrol.2018.04.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., M. Zhang, S. Wang, X. Qiu, and M. Du, 2017: Environmental controls on stable isotopes of precipitation in Lanzhou, China: An enhanced network at city scale. Sci. Total Environ., 609, 10131022, https://doi.org/10.1016/j.scitotenv.2017.07.216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2019: Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev., 192, 337354, https://doi.org/10.1016/j.earscirev.2019.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., C. Huang, Q. Lao, S. Zhang, C. Chen, X. Zhou, X. Lu, and Q. Zhu, 2021: Typhoon control of precipitation dual isotopes in southern China and its palaeoenvironmental implications. J. Geophys. Res. Atmos., 126, e2020JD034336, https://doi.org/10.1029/2020JD034336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., J. Cao, and Y. Huang, 2010: The hydrogen and oxygen isotope composition of precipitation in the Xiamen coastal area. J. Mar. Sci., 28, 1117, https://doi.org/10.3969/j.issn.1001-909X.2010.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, J., W. Huang, S. Feng, Q. Zhang, X. Kuang, J. Chen, and F. Chen, 2021: The modulation of westerlies–monsoon interaction on climate over the monsoon boundary zone in East Asia. Int. J. Climatol., 41, E3049E3064, https://doi.org/10.1002/joc.6903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., M. J. Herman, K. Yoshimura, and I. Y. Fung, 2020: Enriched East Asian oxygen isotope of precipitation indicates reduced summer seasonality in regional climate and westerlies. Proc. Natl. Acad. Sci. USA, 117, 14 74514 750, https://doi.org/10.1073/pnas.1922602117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cong, Z., J. Zhao, D. Yang, and G. Ni, 2010: Understanding the hydrological trends of river basins in China. J. Hydrol., 388, 350356, https://doi.org/10.1016/j.jhydrol.2010.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, H., 1961: Isotopic variations in meteoric waters. Science, 133, 17021703, https://doi.org/10.1126/science.133.3465.1702.

  • Crawford, J., C. E. Hughes, and S. Lykoudis, 2014: Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. J. Hydrol., 519, 23312340, https://doi.org/10.1016/j.jhydrol.2014.10.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J., L. Tian, T. W. Biggs, and R. Wen, 2017: Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: Implications for water balance and modeling. Hydrol. Processes, 31, 10341046, https://doi.org/10.1002/hyp.11085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993.

  • Dayem, K. E., P. Molnar, D. S. Battisti, and G. H. Roe, 2010: Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet. Sci. Lett., 295, 219230, https://doi.org/10.1016/j.epsl.2010.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, J. C., 1974: Some recent investigations of a new fuzzy partitioning algorithm and its application to pattern classification problems. J. Cybern., 4 (2), 115, https://doi.org/10.1080/01969727408546062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. Chapman and Hall/CRC, 456 pp.

  • Falster, G., B. Konecky, M. Madhavan, S. Stevenson, and S. Coats, 2021: Imprint of the Pacific Walker circulation in global precipitation δ18O. J. Climate, 34, 85798597, https://doi.org/10.1175/JCLI-D-21-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fick, S. E., and R. J. Hijmans, 2017: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 43024315, https://doi.org/10.1002/joc.5086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., Y. He, V. Masson-Delmotte, and T. Yao, 2018: ENSO effects on annual variations of summer precipitation stable isotopes in Lhasa, southern Tibetan Plateau. J. Climate, 31, 11731182, https://doi.org/10.1175/JCLI-D-16-0868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldsmith, Y., and Coauthors, 2017: Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proc. Natl. Acad. Sci. USA, 114, 18171821, https://doi.org/10.1073/pnas.1616708114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, W., 2011: Isotope Hydrology. Science Press, 1113 pp.

  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatvani, I. G., M. Leuenberger, B. Kohán, and Z. Kern, 2017: Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region. Polar Sci., 13, 2332, https://doi.org/10.1016/j.polar.2017.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatvani, I. G., and Coauthors, 2021: Geostatistical evaluation of the design of the precipitation stable isotope monitoring network for Slovenia and Hungary. Environ. Int., 146, 106263, https://doi.org/10.1016/j.envint.2020.106263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobson, K. A., and L. I. Wassenaar, 2019: Tracking Animal Migration with Stable Isotopes. 2nd ed. Elsevier, 253 pp., https://doi.org/10.1016/C2017-0-01125-4.

    • Search Google Scholar
    • Export Citation
  • Hobson, K. A., K. Doward, K. J. Kardynal, and J. N. McNeil, 2018: Inferring origins of migrating insects using isoscapes: A case study using the true armyworm, Mythimna unipuncta, in North America. Ecol. Entomol., 43, 332341, https://doi.org/10.1111/een.12505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollins, S. E., C. E. Hughes, J. Crawford, D. I. Cendón, and K. T. Meredith, 2018: Rainfall isotope variations over the Australian continent—Implications for hydrology and isoscape applications. Sci. Total Environ., 645, 630645, https://doi.org/10.1016/j.scitotenv.2018.07.082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., J. Emile-Geay, J. Nusbaumer, and D. Noone, 2018: Impact of convective activity on precipitation δ18O in isotope-enabled general circulation models. J. Geophys. Res. Atmos., 123, 13 595–13 610, https://doi.org/10.1029/2018JD029187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IAEA, 2020: Water isotope system for data analysis, visualization and electronic retrieval. International Atomic Energy Agency, accessed 29 January 2020, https://nucleus.iaea.org/wiser/index.aspx.

    • Search Google Scholar
    • Export Citation
  • Jia, W., X. Ma, X. Xu, R. Yuan, D. Ding, and G. Zhu, 2018: Composition of stable isotope in precipitation and its influences by different vapor sources in the eastern Qilian Mountains. J. Mt. Sci., 15, 22072217, https://doi.org/10.1007/s11629-018-4844-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiao, Y., C. Liu, X. Gao, Q. Xu, Y. Ding, and Z. Liu, 2019: Impacts of moisture sources on the isotopic inverse altitude effect and amount of precipitation in the Hani Rice Terraces region of the Ailao Mountains. Sci. Total Environ., 687, 470478, https://doi.org/10.1016/j.scitotenv.2019.05.426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, K., W. Rao, J. Sun, and W. Guo, 2015: Isotopic characteristics and source of precipitation in the Ordos desert area. Yellow River, 37, 3145, https://doi.org/10.3969/j.issn.1000-1379.2015.03.009.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., Y. Wang, F. Li, L. Qian, Y. Hu, and Y. Shi, 2019: Stable isotopes and chemical characteristics of precipitation in Hangzhou and Huzhou, East China. Environ. Sci. Pollut. Res. Int., 26, 23 71723 729, https://doi.org/10.1007/s11356-019-05712-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, K. R., and B. L. Ingram, 2004: Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett., 220, 365377, https://doi.org/10.1016/S0012-821X(04)00036-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juhlke, T. R., C. Meier, R. van Geldern, K. A. Vanselow, J. Wernicke, J. Baidulloeva, J. A. C. Barth, and S. M. Weise, 2019: Assessing moisture sources of precipitation in the western Pamir Mountains (Tajikistan, central Asia) using deuterium excess. Tellus, 71B, 1601987, https://doi.org/10.1080/16000889.2019.1601987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kabacoff, R. I., 2015: R in Action: Data Analysis and Graphics with R. 2nd ed. Manning, 608 pp.

  • Kaufman, L., and P. J. Rousseeuw, 1990: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, 342 pp.

  • Kong, Y., K. Wang, J. Li, and Z. Pang, 2019: Stable isotopes of precipitation in China: A consideration of moisture sources. Water, 11, 1239, https://doi.org/10.3390/w11061239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, B., and Coauthors, 2010: Isotopic characteristics of Indian precipitation. Water Resour. Res., 46, W12548, https://doi.org/10.1029/2009WR008532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurita, N., N. Yoshida, G. Inoue, and E. A. Chayanova, 2004: Modern isotope climatology of Russia: A first assessment. J. Geophys. Res., 109, D03102, https://doi.org/10.1029/2003JD003404.

    • Search Google Scholar
    • Export Citation
  • Lachniet, M. S., D. E. Lawson, H. Stephen, A. R. Sloat, and W. P. Patterson, 2016: Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation. Water Resour. Res., 52, 65756586, https://doi.org/10.1002/2016WR019436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. E., C. Risi, I. Fung, J. Worden, R. A. Scheepmaker, B. Lintner, and C. Frankenberg, 2012: Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation. J. Geophys. Res., 117, D15112, https://doi.org/10.1029/2011JD017133.

    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhang, S. Wang, Z. Li, and X. Li, 2011: Spatial distribution of δ18O in China’s precipitation based on a secondary variable of temperature. Prog. Geogr., 30, 13871394, https://doi.org/10.11820/dlkxjz.2011.11.008.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2019: Water resources in inland regions of central Asia: Evidence from stable isotope tracing. J. Hydrol., 570, 116, https://doi.org/10.1016/j.jhydrol.2019.01.003.