The Biophysical Impacts of Deforestation on Precipitation: Results from the CMIP6 Model Intercomparison

Xing Luo aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China
bCollege of Oceanic and Atmospheric Sciences, Ocean University of China

Search for other papers by Xing Luo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8876-1650
,
Jun Ge aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China
cJoint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, China

Search for other papers by Jun Ge in
Current site
Google Scholar
PubMed
Close
,
Weidong Guo aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China
cJoint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, China

Search for other papers by Weidong Guo in
Current site
Google Scholar
PubMed
Close
,
Lei Fan aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China
bCollege of Oceanic and Atmospheric Sciences, Ocean University of China

Search for other papers by Lei Fan in
Current site
Google Scholar
PubMed
Close
,
Chaorong Chen aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Chaorong Chen in
Current site
Google Scholar
PubMed
Close
,
Yu Liu aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yu Liu in
Current site
Google Scholar
PubMed
Close
, and
Limei Yang aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Limei Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deforestation can impact precipitation through biophysical processes and such effects are commonly examined by models. However, previous studies mostly conduct deforestation experiments with a single model and the simulated precipitation responses to deforestation diverge across studies. In this study, 11 Earth system models are used to robustly examine the biophysical impacts of deforestation on precipitation, precipitation extremes, and the seasonal pattern of the rainy season through a comparison of a control simulation and an idealized global deforestation simulation with clearings of 20 million km2 of forests. The multimodel mean suggests decreased precipitation, reduced frequency and intensity of heavy precipitation, and shortened duration of rainy seasons over deforested areas. The deforestation effects can even propagate to some regions that are remote from deforested areas (e.g., the tropical and subtropical oceans and the Arctic Ocean). Nevertheless, the 11 models do not fully agree on the precipitation changes almost everywhere. In general, the models exhibit higher consistency over the deforested areas and a few regions outside the deforested areas (e.g., the subtropical oceans) but lower consistency over other regions. Such intermodel spread mostly results from divergent responses of evapotranspiration and atmospheric moisture convergence to deforestation across the models. One of the models that has multiple simulation members also reveals considerable spread of the precipitation responses to deforestation across the members due to internal model variability. This study highlights the necessity of robustly examining precipitation responses to deforestation based on multiple models and each model with multiple simulation members.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Ge, junge@nju.edu.cn

Abstract

Deforestation can impact precipitation through biophysical processes and such effects are commonly examined by models. However, previous studies mostly conduct deforestation experiments with a single model and the simulated precipitation responses to deforestation diverge across studies. In this study, 11 Earth system models are used to robustly examine the biophysical impacts of deforestation on precipitation, precipitation extremes, and the seasonal pattern of the rainy season through a comparison of a control simulation and an idealized global deforestation simulation with clearings of 20 million km2 of forests. The multimodel mean suggests decreased precipitation, reduced frequency and intensity of heavy precipitation, and shortened duration of rainy seasons over deforested areas. The deforestation effects can even propagate to some regions that are remote from deforested areas (e.g., the tropical and subtropical oceans and the Arctic Ocean). Nevertheless, the 11 models do not fully agree on the precipitation changes almost everywhere. In general, the models exhibit higher consistency over the deforested areas and a few regions outside the deforested areas (e.g., the subtropical oceans) but lower consistency over other regions. Such intermodel spread mostly results from divergent responses of evapotranspiration and atmospheric moisture convergence to deforestation across the models. One of the models that has multiple simulation members also reveals considerable spread of the precipitation responses to deforestation across the members due to internal model variability. This study highlights the necessity of robustly examining precipitation responses to deforestation based on multiple models and each model with multiple simulation members.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun Ge, junge@nju.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 11.6 MB)
Save
  • Avissar, R., and D. Werth, 2005: Global hydroclimatological teleconnections resulting from tropical deforestation. J. Hydrometeor., 6, 134145, https://doi.org/10.1175/JHM406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badger, A. M., and P. A. Dirmeyer, 2016: Remote tropical and sub-tropical responses to Amazon deforestation. Climate Dyn., 46, 30573066, https://doi.org/10.1007/s00382-015-2752-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190, https://doi.org/10.1038/35041545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2016: Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. Syst., 47, 97121, https://doi.org/10.1146/annurev-ecolsys-121415-032359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boysen, L. R., and Coauthors, 2020: Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 17, 56155638, https://doi.org/10.5194/bg-17-5615-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breil, M., and Coauthors, 2020: The opposing effects of reforestation and afforestation on the diurnal temperature cycle at the surface and in the lowest atmospheric model level in the European summer. J. Climate, 33, 91599179, https://doi.org/10.1175/JCLI-D-19-0624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate, 26, 68596881, https://doi.org/10.1175/JCLI-D-12-00623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butt, N., P. A. de Oliveira, and M. H. Costa, 2011: Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res., 116, D11120, https://doi.org/10.1029/2010JD015174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. Dirmeyer, 2017: Impacts of land-use/land-cover change on afternoon precipitation over North America. J. Climate, 30, 70677079, https://doi.org/10.1175/JCLI-D-16-0589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and Coauthors, 2019: Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst., 11, 185209, https://doi.org/10.1029/2018MS001369.

    • Search Google Scholar
    • Export Citation
  • D’Almeida, C., and Coauthors, 2007: The effects of deforestation on the hydrological cycle in Amazonia: A review on scale and resolution. Int. J. Climatol., 27, 633647, https://doi.org/10.1002/joc.1475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., and Coauthors, 2021: Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX FPS 1 LUCAS models: I. Evaluation of the snow-albedo effect. Cryosphere Discuss., https://doi.org/10.5194/tc-2021-290.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and Coauthors, 2020: Biogeophysical impacts of forestation in Europe: First results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison. Earth Syst. Dyn., 11, 183200. https://doi.org/10.5194/esd-11-183-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiment. J. Climate, 25, 32613281, https://doi.org/10.1175/JCLI-D-11-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devaraju, N., B. Govindasamy, and A. Modak, 2015: Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc. Natl. Acad. Sci. USA, 112, 32573262, https://doi.org/10.1073/pnas.1423439112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döscher, R., and Coauthors, 2022: The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6. Geosci. Model Dev., https://doi.org/10.5194/gmd-2020-446, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. Meehl, C. Senior, B. Stevens, S. Ronald, and K. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., T. R. Knutson, and P. C. D. Milly, 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19, 28352850, https://doi.org/10.1175/JCLI3737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. Pitman, M. England, and P. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269, https://doi.org/10.1175/2008JCLI2580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J., A. J. Pitman, W. D. Guo, S. Y. Wang, and C. B. Fu, 2019: Do uncertainties in the reconstruction of land cover affect the simulation of air temperature and rainfall in the CORDEX region of East Asia? J. Geophys. Res. Atmos., 124, 36473670, https://doi.org/10.1029/2018JD029945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajima, T., and Coauthors, 2020: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev., 13, 21972244, https://doi.org/10.5194/gmd-13-2197-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2020: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev., 13, 54255464, https://doi.org/10.5194/gmd-13-5425-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., J. S. Kug, H. W. Linderholm, D. L. Chen, B. M. Kim, and S. Y. Jun, 2014: Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction. Environ. Res. Lett., 9, 094007, https://doi.org/10.1088/1748-9326/9/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, G., and Coauthors, 2019: Land–climate interactions. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, P. R. Shukla et al., Eds., IPCC, 131247, https://www.ipcc.ch/site/assets/uploads/2019/11/05_Chapter-2.pdf.

    • Search Google Scholar
    • Export Citation
  • Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khanna, J., D. Medvigy, S. Fueglistaler, and R. Walko, 2017: Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Climate Change, 7, 200204, https://doi.org/10.1038/nclimate3226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laguë, M. M., and A. L. S. Swann, 2016: Progressive mid-latitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 55615573, https://doi.org/10.1175/JCLI-D-15-0748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and K. Vandecar, 2015: Effects of tropical deforestation on climate and agriculture. Nat. Climate Change, 5, 2736, https://doi.org/10.1038/nclimate2430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2016: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev., 9, 29732998, https://doi.org/10.5194/gmd-9-2973-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. H., and M. H. Lo, 2021: The role of El Niño in modulating the effects of deforestation in the Maritime Continent. Environ. Chem. Lett., 16, 054056, https://doi.org/10.1088/1748-9326/abe88e.

    • Search Google Scholar
    • Export Citation
  • Leite-Filho, A. T., V. Y. de Sousa Pontes, and M. H. Costa, 2019: Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos., 124, 52685281, https://doi.org/10.1029/2018JD029537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leite-Filho, A. T., B. S. Soares, J. L. Davis, G. M. Abrahao, and J. Borner, 2021: Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun., 12, 2591, https://doi.org/10.1038/s41467-021-22840-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., E. L. Davin, G. Duveiller, B. Crezee, R. Meier, A. Cescatti, and S. I. Seneviratne, 2020: Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing. Earth Syst. Dyn., 11, 12091232, https://doi.org/10.5194/esd-11-1209-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and Coauthors, 2019: Development of land surface model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6. J. Meteor. Res., 33, 851869, https://doi.org/10.1007/s13351-019-9016-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., A. J. Pitman, and S. A. Sisson, 2016: Does Amazonian deforestation cause global effects: Can we be sure? J. Geophys. Res. Atmos., 121, 55675584, https://doi.org/10.1002/2015JD024357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyssaert, S., and Coauthors, 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, https://doi.org/10.1038/nclimate2196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, D., M. Notaro, Z. Y. Liu, G. S. Chen, and Y. Q. Liu, 2013: Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability. Climate Dyn., 41, 24392450, https://doi.org/10.1007/s00382-012-1592-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM 1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, R., and Coauthors, 2018: Evaluating and improving the Community Land Model’s sensitivity to land cover. Biogeosciences, 15, 47314757, https://doi.org/10.5194/bg-15-4731-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, R., J. Schwaab, S. I. Seneviratne, M. Sprenger, E. Lewis, and E. L. Davin, 2021: Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci., 14, 473478, https://doi.org/10.1038/s41561-021-00773-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, R. D., J. F. Salazar, J. A. Martinez, J. C. Villegas, and P. A. Arias, 2019: Forest-induced exponential growth of precipitation along climatological wind streamlines over the Amazon. J. Geophys. Res. Atmos., 124, 25892599, https://doi.org/10.1029/2018JD029534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., and Coauthors, 2022: Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX FPS LUCAS models: Part II. The role of changing vegetation. Cryosphere, https://doi.org/10.5194/tc-2021-291, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Y., T. W. Biggs, and F. De Sales, 2021: Forests mitigate drought in an agricultural region of the Brazilian Amazon: Atmospheric moisture tracking to identify critical source areas. Geophys. Res. Lett., 48, e2020GL091380, https://doi.org/10.1029/2020GL091380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perugini, L., L. Caporaso, S. Marconi, A. Cescatti, B. Quesada, N. de Noblet-Ducoudré, J. I. House, and A. Arneth, 2017: Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett., 12, 053002, https://doi.org/10.1088/1748-9326/aa6b3f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and N. de Noblet-Ducoudré, 2012: Human effects on climate through land-use-induced land-cover change. The Future of the World’s Climate, A. Henderson-Sellers and K. McGuffie, Eds., 7795, Elsevier, https://doi.org/10.1016/B978-0-12-386917-3.00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., F. B. Avila, G. Abramowitz, Y. P. Wang, and S. J. Phipps, 2011: Importance of background climate in determining impact of land-cover change on regional climate. Nat. Climate Change, 1, 472475, https://doi.org/10.1038/nclimate1294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2012: Effects of land cover change on temperature and rainfall extremes in multimodel ensemble simulations. Earth Syst. Dyn., 3, 213231, https://doi.org/10.5194/esd-3-213-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quesada, B., D. Narayanappa, N. de Noblet-Ducoudré, and A. Arneth, 2017: Reduction of monsoon rainfall in response to past and future land-use and land-cover changes. Geophys. Res. Lett., 44, 10411050, https://doi.org/10.1002/2016GL070663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, https://doi.org/10.1126/science.1139601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seferian, R., and Coauthors, 2019: Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst., 11, 41824227, https://doi.org/10.1029/2019MS001791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellar, A., and Coauthors, 2019: UKESM1: Description and evaluation of the UK Earth System Model. J. Adv. Model. Earth Syst., 11, 45134558, https://doi.org/10.1029/2019MS001739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D., and L. Garcia-Carreras, 2015: The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett., 42, 95469552, https://doi.org/10.1002/2015GL066063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D., S. Arnold, and C. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, https://doi.org/10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D., J. Baker, L. Garcia-Carreras, and J. H. Marsham, 2018: The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour., 43, 193218, https://doi.org/10.1146/annurev-environ-102017-030136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staal, A., and Coauthors, 2018: Forest-rainfall cascades buffer against drought across the Amazon. Nat. Climate Change, 8, 539543, https://doi.org/10.1038/s41558-018-0177-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staal, A., B. M. Flores, A. P. D. Aguiar, J. H. C. Bosmans, I. Fetzer, and O. A. Tuinenburg, 2020: Feedback between drought and deforestation in the Amazon. Environ. Res. Lett., 15, 044024, https://doi.org/10.1088/1748-9326/ab738e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A., I. Fung, and J. Chiang, 2011: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, https://doi.org/10.1073/pnas.1116706108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sy, S., and B. Quesada, 2020: Anthropogenic land cover change impact on climate extremes during the 21st century. Environ. Res. Lett., 15, 034002, https://doi.org/10.1088/1748-9326/ab702c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolle, M. H., S. Engler, and H. J. Panitz, 2017: Impact of abrupt land cover changes by tropical deforestation on Southeast Asian climate and agriculture. J. Climate, 30, 25872600, https://doi.org/10.1175/JCLI-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winckler, J., Q. Lejeune, C. H. Reick, and J. Pongratz, 2019: Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett., 46, 745755, https://doi.org/10.1029/2018GL080211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, J. R. Worden, and L. Yin, 2017: Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA, 114, 84818486, https://doi.org/10.1073/pnas.1621516114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, https://doi.org/10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1148 290 0
Full Text Views 903 632 94
PDF Downloads 1001 650 104