• Chen, B., and X. D. Xu, 2016: Spatiotemporal structure of the moisture sources feeding heavy precipitation events over the Sichuan Basin. Int. J. Climatol., 36, 34463457, https://doi.org/10.1002/joc.4567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., X. D. Xu, S. Yang, and W. Zhang, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 110, 423435, https://doi.org/10.1007/s00704-012-0641-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., W. Zhang, S. Yang, and X. Xu, 2019: Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Climate Dyn., 53, 68916907, https://doi.org/10.1007/s00382-019-04963-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crane, R., and B. Hewitson, 2003: Clustering and upscaling of station precipitation records to regional patterns using self-organizing maps (SOMs). Climate Res., 25, 95107, https://doi.org/10.3354/cr025095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, B.-L., and X.-Y. Li, 2015: Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Sci. Total Environ., 527–528, 2637, https://doi.org/10.1016/j.scitotenv.2015.04.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curio, J., and D. Scherer, 2016: Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst. Dyn., 7, 767782, https://doi.org/10.5194/esd-7-767-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, and F. Su, 2013: Climate change on the Northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Climate, 26, 85109, https://doi.org/10.1175/JCLI-D-11-00738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, and L. Gimeno, 2011: Sources of moisture for China and their variations during drier and wetter conditions in 2000–2004: A Lagrangian approach. Climate Res., 50, 215225, https://doi.org/10.3354/cr01043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., L. Gimeno, R. Nieto, R. M. Trigo, and S. M. Vicente-Serrano, 2017: Drought episodes in the climatological sinks of the Mediterranean moisture source: The role of moisture transport. Global Planet. Change, 151, 414, https://doi.org/10.1016/j.gloplacha.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res., 117, https://doi.org/10.1029/2011JD017012.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., X. Li, L. R. Leung, D. Chen, and J. Xu, 2015: Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett., 10, 034013, https://doi.org/10.1088/1748-9326/10/3/034013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and X. Bi, 2005: Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys. Res. Lett., 32, L21715, https://doi.org/10.1029/2005GL024288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, X. F., L. M. Yang, Y. X. Zhang, and J. G. Li, 2019: Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Global Planet. Change, 172, 159178, https://doi.org/10.1016/j.gloplacha.2018.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, M., D. Rayner, and D. Chen, 2010: Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus, 62A, 605616, https://doi.org/10.1111/j.1600-0870.2010.00456.x.

    • Search Google Scholar
    • Export Citation
  • Han, T., X. Guo, B. Zhou, and X. Hao, 2020: Recent changes in heavy precipitation events in northern central China and associated atmospheric circulation. Asia-Pac. J. Atmos. Sci., 57, 301310, https://doi.org/10.1007/s13143-020-00195-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., D. Jiang, and X. Lang, 2018: Sources of moisture for different intensities of summer rainfall over the Chinese Loess Plateau during 1979–2009. Int. J. Climatol., 38, e1280e1287, https://doi.org/10.1002/joc.5416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ma, 2017: Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J. Geophys. Res. Atmos., 122, 12 52212 540, https://doi.org/10.1002/2017JD027728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., T. Qiu, Z. Yang, D. Lin, J. S. Wright, B. Wang, and X. He, 2018: On the formation mechanism for wintertime extreme precipitation events over the southeastern Tibetan Plateau. J. Geophys. Res. Atmos., 123, 12 69212 714, https://doi.org/10.1029/2018JD028921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., and X. Cui, 2015: Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13. J. Hydrometeor., 16, 19061917, https://doi.org/10.1175/JHM-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, E., R. Sriver, D. Wuebbles, and K. Kunkel, 2016: Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophys. Res. Lett., 43, 53855393, https://doi.org/10.1002/2016GL069151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X., X. Luo, J. J. Jiao, S. Liang, X. Zhang, H. Li, and J. Liu, 2019: Using stable isotopes of surface water and groundwater to quantify moisture sources across the Yellow River source region. Hydrol. Processes, 33, 18351850, https://doi.org/10.1002/hyp.13441.

    • Search Google Scholar
    • Export Citation
  • Läederach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., B. Cui, Y. Wang, Y. Wang, and B. Jiang, 2021: Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau. Groundwater, 59, 245–255, https://doi.org/10.1111/gwat.13042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., X. Li, D. Yang, J. Wang, B. Gao, X. Pan, Y. Zhang, and X. Hao, 2019: Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale. J. Geophys. Res. Atmos., 124, 88748895, https://doi.org/10.1029/2019JD030760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., S. Yang, Z. Wang, X. Zhu, and H. Tang, 2010: Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res., 42, 449457, https://doi.org/10.1657/1938-4246-42.4.449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., A. J. Dolman, and Z. Xu, 2016: Atmospheric moisture sources, paths, and the quantitative importance to the eastern Asian monsoon region. J. Hydrometeor., 17, 637649, https://doi.org/10.1175/JHM-D-15-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., and C. Wang, 2020: Precipitation recycling using a new evapotranspiration estimator for Asian-African arid regions. Theor. Appl. Climatol., 140, 113, https://doi.org/10.1007/s00704-019-03063-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, D., W. Huang, Z. Yang, X. He, T. Qiu, B. Wang, and J. S. Wright, 2019: Impacts of wintertime extratropical cyclones on temperature and precipitation over northeastern China during 1979–2016. J. Geophys. Res. Atmos., 124, 15141536, https://doi.org/10.1029/2018JD029174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., and C. Bueh, 2012: Precursory signals of extensive and persistent extreme cold events in China. Atmos. Oceanic Sci. Lett., 5, 252257, https://doi.org/10.1080/16742834.2012.11446999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., C. Bueh, and Z. Xie, 2021: Extensive cold-precipitation-freezing events in southern China and their circulation characteristics. Adv. Atmos. Sci., 38, 8197, https://doi.org/10.1007/s00376-020-0117-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, H., D. Jiang, and X. Lang, 2018: Sources of moisture for different intensities of summer rainfall over the Chinese Loess Plateau during 1979–2009. Int. J. Climatol., 38, e1280–e1287, https://doi.org/10.1002/joc.5416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, T., and Coauthors, 2019: Moisture sources for wintertime intense precipitation events over the three snowy subregions of the Tibetan Plateau. J. Geophys. Res. Atmos., 124, 12 70812 725, https://doi.org/10.1029/2019JD031110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salah, Z., R. Nieto, A. Drumond, L. Gimeno, and S. M. Vicente-Serrano, 2018: A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes. J. Hydrol., 560, 382395, https://doi.org/10.1016/j.jhydrol.2018.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salih, A. A. M., Q. Zhang, and M. Tjernstroem, 2015: Lagrangian tracing of Sahelian Sudan moisture sources. J. Geophys. Res. Atmos., 120, 67936808, https://doi.org/10.1002/2015JD023238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeor., 6, 961984, https://doi.org/10.1175/JHM470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 24572474, https://doi.org/10.1175/JCLI-D-13-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River Source region in China and the associated regimes. J. Climate, 31, 74417457, https://doi.org/10.1175/JCLI-D-17-0680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., Y. Liu, Q. Cai, Q. Li, H. Song, C. Fang, and R. Liu, 2020: Similarities and differences in driving factors of precipitation changes on the western Loess Plateau and the northeastern Tibetan Plateau at different timescales. Climate Dyn., 55, 28892902, https://doi.org/10.1007/s00382-020-05429-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez, M., R. Nieto, A. Drumond, and L. Gimeno, 2016: Moisture transport into the Arctic: Source-receptor relationships and the roles of atmospheric circulation and evaporation. J. Geophys. Res. Atmos., 121, 13 49313 509, https://doi.org/10.1002/2016JD025400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., H. Li, J. Wang, and X. Hao, 2020: Water vapor from western Eurasia promotes precipitation during the snow season in northern Xinjiang, a typical arid region in central Asia. Water, 12, 141, https://doi.org/10.3390/w12010141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., and Coauthors, 2015: Arctic moisture source for Eurasian snow cover variations in autumn. Environ. Res. Lett., 10, 054015, https://doi.org/10.1088/1748-9326/10/5/054015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., L. Ma, M. Ma, H. Zhang, and W. Yuan, 2017: Spatial–temporal variability of snow cover and depth in the Qinghai–Tibetan Plateau. J. Climate, 30, 15211533, https://doi.org/10.1175/JCLI-D-15-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2013: A reviews of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observation and simulations. Rev. Geophys., 51, 525548, https://doi.org/10.1002/rog.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W., T. Yao, L. Tian, Y. Ma, K. Ichiyanagi, Y. Wang, and W. Sun, 2008: Relationships between δ18O in precipitation and air temperature and moisture origin on a south–north transect of the Tibetan Plateau. Atmos. Res., 87, 158–169, https://doi.org/10.1016/j.atmosres.2007.08.004.

    • Crossref
    • Export Citation
  • Zhang, C., Q. Tang, and D. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 18071819, https://doi.org/10.1175/JCLI-D-15-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Yong, X. Shao, Z.-Y. Yin, and Q. Tian, 2013: A dendroclimatic analysis of regional moisture variation in the northeastern Tibetan Plateau during the past 150 years. Trees, 27, 455463, https://doi.org/10.1007/s00468-012-0833-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Yu, W. Huang, and D. Zhong, 2019: Major moisture pathways and their importance to rainy season precipitation over the Sanjiangyuan region of the Tibetan Plateau. J. Climate, 32, 68376857, https://doi.org/10.1175/JCLI-D-19-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, X., T. Zhang, S. Kang, and J. Wang, 2021: Spatiotemporal variability of snow cover timing and duration over the Eurasian continent during 1966–2012. Sci. Total Environ., 750, 141670, https://doi.org/10.1016/j.scitotenv.2020.141670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., P. Zhao, and J. Chen, 2019: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms. J. Climate, 32, 41034119, https://doi.org/10.1175/JCLI-D-18-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Z. Xie, and X. Liu, 2019: An analysis of moisture sources of torrential rainfall events over Xinjiang, China. J. Hydrometeor., 20, 21092122, https://doi.org/10.1175/JHM-D-19-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., and Coauthors, 2020: Long-distance atmospheric moisture dominates water budget in permafrost regions of the central Qinghai-Tibet Plateau. Hydrol. Processes, 34, 42804294, https://doi.org/10.1002/hyp.13871.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 177 173 32
Full Text Views 72 71 14
PDF Downloads 103 99 22

Continental Water Vapor Dominantly Impacts Precipitation during the Snow Season on the Northeastern Tibetan Plateau

View More View Less
  • 1 aNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
  • | 2 bUniversity of Chinese Academy of Sciences, Beijing, China
  • | 3 cKey Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Chinese Academy of Sciences, Lanzhou, China
  • | 4 dClear Technology Co. Ltd., Beijing, China
Restricted access

Abstract

Atmospheric water vapor plays a key role in the water cycle, especially on the Tibetan Plateau, where precipitation is an invaluable contributor to water resources. To better understand which water vapor source areas influence precipitation on the northeastern Tibetan Plateau (NETP), we applied the flexible particle dispersion method (FLEXPART) to simulate water vapor trajectories and water vapor source contribution related to precipitation events during the snow season from 1979 to 2017 on the NETP. The results show that continental water vapor source areas contributed 92.33% of the water vapor to precipitation events on the NETP, which was obviously greater than the water vapor contribution from oceanic areas. One key continental water vapor source area, the Tibetan Plateau without the study area, contributed 66.13% of the water vapor to the precipitation, and central Asia supplied 8.69%, ranking second. Comparing the distributions of the water vapor contributions to extensive and regional precipitation events revealed that the only difference between extensive and regional precipitation events is in the magnitudes of the water vapor contributions, and the spatial distributions of the water vapor contributions are extremely similar. Central and southern China obviously supplied more water vapor to extensive precipitation events than to regional precipitation events. These results help us better understand the recent drastic precipitation changes on the NETP.

Significance Statement

We sought to understand how water vapor influences precipitation over the northeastern Tibetan Plateau and which water vapor source areas play a key role in the water vapor supply. Therefore, we applied a numerical model to investigate the relationship between water vapor and precipitation from 1979 to 2017 during the snow season. Continental water vapor source areas contributed considerably more water vapor than oceanic water vapor source areas. The most important continental water vapor contributor was the Tibetan Plateau without the northeastern Tibetan Plateau area, and the second highest contributor was central Asia. Future work should focus on how water vapor impacts the precipitation changes in this wetter and warming area.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Hongyi Li, lihongyi@lzb.ac.cn; Wang Jian, wjian@lzb.ac.cn

Abstract

Atmospheric water vapor plays a key role in the water cycle, especially on the Tibetan Plateau, where precipitation is an invaluable contributor to water resources. To better understand which water vapor source areas influence precipitation on the northeastern Tibetan Plateau (NETP), we applied the flexible particle dispersion method (FLEXPART) to simulate water vapor trajectories and water vapor source contribution related to precipitation events during the snow season from 1979 to 2017 on the NETP. The results show that continental water vapor source areas contributed 92.33% of the water vapor to precipitation events on the NETP, which was obviously greater than the water vapor contribution from oceanic areas. One key continental water vapor source area, the Tibetan Plateau without the study area, contributed 66.13% of the water vapor to the precipitation, and central Asia supplied 8.69%, ranking second. Comparing the distributions of the water vapor contributions to extensive and regional precipitation events revealed that the only difference between extensive and regional precipitation events is in the magnitudes of the water vapor contributions, and the spatial distributions of the water vapor contributions are extremely similar. Central and southern China obviously supplied more water vapor to extensive precipitation events than to regional precipitation events. These results help us better understand the recent drastic precipitation changes on the NETP.

Significance Statement

We sought to understand how water vapor influences precipitation over the northeastern Tibetan Plateau and which water vapor source areas play a key role in the water vapor supply. Therefore, we applied a numerical model to investigate the relationship between water vapor and precipitation from 1979 to 2017 during the snow season. Continental water vapor source areas contributed considerably more water vapor than oceanic water vapor source areas. The most important continental water vapor contributor was the Tibetan Plateau without the northeastern Tibetan Plateau area, and the second highest contributor was central Asia. Future work should focus on how water vapor impacts the precipitation changes in this wetter and warming area.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Hongyi Li, lihongyi@lzb.ac.cn; Wang Jian, wjian@lzb.ac.cn
Save