• Barnes, E. A., and D. L. Hartmann, 2010: Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys. Res. Lett., 37, L23802, https://doi.org/10.1029/2010GL045700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, https://doi.org/10.1002/2013GL058745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., G. R. Henderson, E. McDonnell, M. Henry, and T. Mote, 2020: Extreme Greenland blocking and high-latitude moisture transport. Atmos. Sci. Lett., 21, e1002, https://doi.org/10.1002/asl.1002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, A. R. Lupo, and E. Hernández, 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 10421063, https://doi.org/10.1175/JCLI3678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., B. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64, 28812898, https://doi.org/10.1175/JAS3984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217223, https://doi.org/10.1256/wea.74.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozkurt, D., R. Rondanelli, J. Marin, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos., 123, 38713892, https://doi.org/10.1002/2017JD027796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozkurt, D., D. H. Bromwich, J. Carrasco, K. M. Hines, J. C. Maureira, and R. Rondanelli, 2020: Recent near-surface temperature trends in the Antarctic Peninsula from observed, reanalysis and regional climate model data. Adv. Atmos. Sci., 37, 477493, https://doi.org/10.1007/s00376-020-9183-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozkurt, D., D. H. Bromwich, J. Carrasco, and R. Rondanelli, 2021: Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: Contrasting global and regional climate model simulations. Climate Dyn., 56, 38533874, https://doi.org/10.1007/s00382-021-05667-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., 2013: Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. Int. J. Climatol., 33, 843851, https://doi.org/10.1002/joc.3473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, https://doi.org/10.1175/2011JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehler, T., C. C. Raible, and T. F. Stocker, 2011: The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus, 63A, 174187, https://doi.org/10.1111/j.1600-0870.2010.00492.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., D. Bozkurt, and R. R. Cordero, 2021: A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Sci., 28, 100653, https://doi.org/10.1016/j.polar.2021.100653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X., and J. M. Wallace, 1993: Cluster analysis of the Northern Hemisphere wintertime 500-hpa height field: Spatial patterns. J. Atmos. Sci., 50, 26742696, https://doi.org/10.1175/1520-0469(1993)050<2674:CAOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2013: Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. J. Geophys. Res. Atmos., 118, 11 48111 492, https://doi.org/10.1002/jgrd.50860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., M. MacFerring, D. Kennett, D. Bozkurt, and T. Scambos, 2021: Record warmth and surface melt on the Antarctic Peninsula in February 2020 [in “State of the Climate in 2020”]. Bull. Amer. Meteor. Soc., 102 (8), S328S329, https://doi.org/10.1175/2021BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Damião Mendes, M. C., and I. F. A. Cavalcanti, 2014: The relationship between the Antarctic oscillation and blocking events over the South Pacific and Atlantic Oceans. Int. J. Climatol., 34, 529544, https://doi.org/10.1002/joc.3729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, P. G. Fogli, E. Manzini, S. Gualdi, and A. Navarra, 2014: European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Climate Dyn., 43, 7185, https://doi.org/10.1007/s00382-013-1873-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., A. Weisheimer, M. Balmaseda, S. J. Johnson, F. Molteni, C. D. Roberts, R. Senan, and T. N. Stockdale, 2021: The representation of winter Northern Hemisphere atmospheric blocking in ECMWF seasonal prediction systems. Quart. J. Roy. Meteor. Soc., 147, 13441363, https://doi.org/10.1002/qj.3974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lima Nascimento, E., and T. Ambrizzi, 2002: The influence of atmospheric blocking on the Rossby wave propagation in Southern Hemisphere winter flows. J. Meteor. Soc. Japan, 80, 139159, https://doi.org/10.2151/jmsj.80.139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586, https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuelsson, B. D., N. A. Bertler, P. D. Neff, J. A. Renwick, B. R. Markle, W. T. Baisden, and E. D. Keller, 2018: The role of Amundsen–Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into west Antarctica. Climate Dyn., 51, 35793596, https://doi.org/10.1007/s00382-018-4097-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Z., 2004: Statistical relationship between the Northern Hemisphere sea ice and atmospheric circulation during wintertime. Observation, Theory and Modeling of Atmospheric Variability: Selected Papers of Nanjing Institute of Meteorology Alumni in Commemoration of Professor Jijia Zhang, World Scientific, 131141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., J. M. Jones, and J. Renwick, 2012: Seasonal zonal asymmetries in the southern annular mode and their impact on regional temperature anomalies. J. Climate, 25, 62536270, https://doi.org/10.1175/JCLI-D-11-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Gonzalez, S., and D. Fortuny, 2018: How robust are the temperature trends on the Antarctic Peninsula? Antarct. Sci., 30, 322328, https://doi.org/10.1017/S0954102018000251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, S., F. Vasallo, C. Recio-Blitz, J. A. Guijarro, and J. Riesco, 2018: Atmospheric patterns over the Antarctic Peninsula. J. Climate, 31, 35973608, https://doi.org/10.1175/JCLI-D-17-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goyal, R., M. Jucker, A. Sen Gupta, and M. H. England, 2021: Generation of the Amundsen Sea low by Antarctic orography. Geophys. Res. Lett., 48, e2020GL091487, https://doi.org/10.1029/2020GL091487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multi-decadal ocean variability. Science, 334, 655659, https://doi.org/10.1126/science.1205683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900-2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 33, 862880, https://doi.org/10.1002/joc.3475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, https://doi.org/10.1002/joc.3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, P. D. Jones, A. A. Scaife, and R. Allan, 2015: Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland Blocking Index. Int. J. Climatol., 35, 25402554, https://doi.org/10.1002/joc.4157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. E. Cropper, R. J. Hall, and J. Cappelen, 2016: Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol., 36, 48474861, https://doi.org/10.1002/joc.4673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., R. J. Hall, T. E. Cropper, T. J. Ballinger, L. Wake, T. Mote, and J. Cappelen, 2018: Greenland blocking index daily series 1851–2015: Analysis of changes in extremes and links with North Atlantic and UK climate variability and change. Int. J. Climatol., 38, 35463564, https://doi.org/10.1002/joc.5516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirasawa, N., H. Nakamura, H. Motoyama, M. Hayashi, and T. Yamanouchi, 2013: The role of synoptic-scale features and advection in prolonged warming and generation of different forms of precipitation at Dome Fuji station, Antarctica, following a prominent blocking event. J. Geophys. Res. Atmos., 118, 69166928, https://doi.org/10.1002/jgrd.50532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, https://doi.org/10.1175/JCLI-D-12-00813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. D. Sardeshmukh, 1987: A diagnostic study of the dynamics of the Northern Hemisphere winter of 1985-86. Quart. J. Roy. Meteor. Soc., 113, 759778, https://doi.org/10.1002/qj.49711347705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, M. E., D. H. Bromwich, J. P. Nicolas, J. Carrasco, E. Plavcová, X. Zou, and S.-H. Wang, 2019: Sixty years of widespread warming in the southern middle and high latitudes (1957–2016). J. Climate, 32, 68756898, https://doi.org/10.1175/JCLI-D-18-0565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. W., I. Renfrew, A. Orr, B. Webber, D. Holland, and M. Lazzara, 2016: Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Atmos., 121, 62406257, https://doi.org/10.1002/2015JD024680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, D., T. Parker, T. Woollings, B. Harvey, and L. Shaffrey, 2016: The response of high impact blocking weather systems to climate change. Geophys. Res. Lett., 43, 72507258, https://doi.org/10.1002/2016GL069725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. C., and J. Turner, 2009: Antarctic Meteorology and Climatology. Cambridge University Press, 424 pp.

  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42, 433471, https://doi.org/10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LejenÄs, H., and H. Økland, 1983: Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data. Tellus, 35A, 350362, https://doi.org/10.3402/tellusa.v35i5.11446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., D. W. J. Thompson, and M. R. Van den Broeke, 2017: The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett., 44, 11 58011 589, https://doi.org/10.1002/2017GL075998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, https://doi.org/10.1175/JCLI-D-12-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattingly, K., T. Mote, and X. Fettweis, 2018: Atmospheric river impacts on Greenland Ice Sheet surface mass balance. J. Geophys. Res. Atmos., 123, 85388560, https://doi.org/10.1029/2018JD028714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasistationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nabizadeh, E., P. Hassanzadeh, D. Yang, and E. A. Barnes, 2019: Size of the atmospheric blocking events: Scaling law and response to climate change. Geophys. Res. Lett., 46, 13 48813 499, https://doi.org/10.1029/2019GL084863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndarana, T., and D. W. Waugh, 2011: A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci., 68, 798811, https://doi.org/10.1175/2010JAS3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, W., 2018: Atmospheric rivers melt Greenland. Nat. Climate Change, 8, 857858, https://doi.org/10.1038/s41558-018-0297-4.

  • O’Kane, T. J., J. S. Risbey, C. Franzke, I. Horenko, and D. P. Monselesan, 2013: Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools. J. Atmos. Sci., 70, 824842, https://doi.org/10.1175/JAS-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliva, M., F. Navarro, F. Hrbacek, A. Hernandez, D. Nyvlt, P. Pereira, J. Ruiz-Fernandez, and R. Trigo, 2017: Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ., 580, 210223, https://doi.org/10.1016/j.scitotenv.2016.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T. J., G. J. Berry, and M. J. Reeder, 2014: The structure and evolution of heat waves in southeastern Australia. J. Climate, 27, 57685785, https://doi.org/10.1175/JCLI-D-13-00740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, M., T. Bracegirdle, and T. Woollings, 2019: Southern Hemisphere atmospheric blocking in CMIP5 and future changes in the Australia-New Zealand sector. Geophys. Res. Lett., 46, 92819290, https://doi.org/10.1029/2019GL083264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M., J. Risbey, P. Mclntosh, C. Ummenhofer, A. Marshall, and G. Meyers, 2013: The seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship with rainfall. Mon. Wea. Rev., 141, 45344553, https://doi.org/10.1175/MWR-D-13-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111121, https://doi.org/10.1175/BAMS-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, https://doi.org/10.1126/science.222.4629.1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., T. Spengler, and R. Musgrave, 2015: Rossby waves, extreme fronts, and wildfires in southeastern Australia. Geophys. Res. Lett., 42, 20152023, https://doi.org/10.1002/2015GL063125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 1998: ENSO-related variability in the frequency of South Pacific blocking. Mon. Wea. Rev., 126, 31173123, https://doi.org/10.1175/1520-0493(1998)126<3117:ERVITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15, 30583068, https://doi.org/10.1175/1520-0442(2002)015<3058:SHCARW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2005: Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Wea. Rev., 133, 977988, https://doi.org/10.1175/MWR2900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950a: Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 3, 196211, https://doi.org/10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950b: Blocking action in the middle troposphere and its effect upon regional climate. Part II: The climatology of blocking action. Tellus, 3, 275301, https://doi.org/10.3402/tellusa.v2i4.8603.

    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., and T. Woollings, 2017: Impact of atmospheric blocking on South America in austral summer. J. Climate, 30, 18211837, https://doi.org/10.1175/JCLI-D-16-0493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rondanelli, R., B. Hatchett, J. Rutllant, D. Bozkurt, and R. Garreaud, 2019: Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett., 46, 34823491, https://doi.org/10.1029/2018GL081475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., T. Woollings, J. Knight, G. Martin, and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152, https://doi.org/10.1175/2010JCLI3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaller, N., J. Sillmann, J. Anstey, E. M. Fischer, C. M. Grams, and S. Russo, 2018: Influence of blocking on northern European and western Russian heatwaves in large climate model ensembles. Environ. Res. Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233249, https://doi.org/10.1002/joc.1250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1986: A case study of eddy forcing during an Atlantic blocking episode. Anomalous Atmospheric Flows and Blocking, Advances in Geophysics, Vol. 29, Elsevier, 135162, https://doi.org/10.1016/S0065-2687(08)60037-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., M. Croci-Maspoli, M. Kallache, and R. W. Katz, 2011: Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J. Climate, 24, 58995913, https://doi.org/10.1175/2011JCLI4075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1996: A climatology of anticyclones and blocking for the Southern Hemisphere. Mon. Wea. Rev., 124, 245264, https://doi.org/10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, P., K. Ide, and M. Ghil, 1999: Multiple regimes in Northern Hemisphere height fields via mixture model clustering. J. Atmos. Sci., 56, 37043723, https://doi.org/10.1175/1520-0469(1999)056<3704:MRINHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., Q. Ding, D. Battisti, and A. Jenkins, 2012: Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea embayment, west Antarctica. Ann. Glaciol., 53, 1928, https://doi.org/10.3189/2012AoG60A110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, M. S., S. N. Chenoli, S. Colwell, R. Grant, M. Simms, J. Law, and A. Abu Samah, 2018: Precipitation instruments at Rothera Station, Antarctic Peninsula: A comparative study. Polar Res., 37, 1503906, https://doi.org/10.1080/17518369.2018.1503906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., E. Tosi, A. Navarra, and L. Pedulli, 1994: Northern and Southern Hemisphere seasonal variability of blocking frequency and predictability. Mon. Wea. Rev., 122, 19712003, https://doi.org/10.1175/1520-0493(1994)122<1971:NASHSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. F., and K. C. Mo, 1985: Blocking in the Southern Hemisphere. Mon. Wea. Rev., 113, 321, https://doi.org/10.1175/1520-0493(1985)113<0003:BITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013a: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, S. Hosking, G. J. Marshall, and A. Orr, 2013b: The Amundsen Sea low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415, https://doi.org/10.1038/nature18645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., and B. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 16381652, https://doi.org/10.1175/2007JAS2337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wachowicz, L. J., J. R. Preece, T. L. Mote, B. S. Barrett, and G. R. Henderson, 2021: Historical trends of seasonal Greenland blocking under different blocking metrics. Int. J. Climatol., 41 (Suppl. 1), E3263E3278, https://doi.org/10.1002/joc.6923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., 2000: On the Arctic and Antarctic oscillations. 2000 NCAR Advanced Studies Program Summer Colloquium on Dynamics of Decadal to Centennial Climate Variability, Boulder, CO, NCAR, http://research.jisao.washington.edu/wallace/ncar_notes/#References.

    • Search Google Scholar
    • Export Citation
  • Weijenborg, C., H. de Vries, and R. J. Haarsma, 2012: On the direction of Rossby wave breaking in blocking. Climate Dyn., 39, 28232831, https://doi.org/10.1007/s00382-012-1332-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiedenmann, J. M., A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, 2002: The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic. J. Climate, 15, 34593473, https://doi.org/10.1175/1520-0442(2002)015<3459:TCOBAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. H. Bromwich, and K. M. Hines, 2016: Simulating the mutual forcing of anomalous high Southern latitude atmospheric circulation by El Niño flavors and the southern annular mode. J. Climate, 29, 22912309, https://doi.org/10.1175/JCLI-D-15-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and Coauthors, 2018: Blocking and its response to climate change. Curr. Climate Change Rep., 4, 287300, https://doi.org/10.1007/s40641-018-0108-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, W., 1994: Seasonal climate summary Southern Hemisphere (autumn 1993)—A second mature ENSO phase. Aust. Meteor. Mag., 43, 205212.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and D. G. Martinson, 2001: The Antarctic dipole and its predictability. Geophys. Res. Lett., 28, 36093612, https://doi.org/10.1029/2001GL012969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., M. R. Kaplan, and M. A. Cane, 2018: The interconnected global climate system—A review of tropical–polar teleconnections. J. Climate, 31, 57655792, https://doi.org/10.1175/JCLI-D-16-0637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 286 281 43
Full Text Views 60 60 8
PDF Downloads 71 71 8

Atmospheric Blocking Trends and Seasonality around the Antarctic Peninsula

View More View Less
  • 1 aDepartamento de Meteorología, Universidad de Valparaíso, Valparaíso, Chile
  • | 2 bCentro de Estudios Atmosféricos y Astroestadística, Universidad de Valparaíso, Valparaíso, Chile
  • | 3 cCenter for Climate and Resilience Research, Santiago, Chile
  • | 4 dCentro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile
  • | 5 eOceanography Department, U.S. Naval Academy, Annapolis, Maryland
Restricted access

Abstract

We analyze the seasonal evolution and trends of atmospheric blocking from 1979 to 2018 using a geopotential-height-based method over two domains, one located to the west (150°–90°W, 50°–70°S) and the other over and to the east (90°–30°W, 50°–70°S) of the Antarctic Peninsula. Spatial patterns of geopotential heights on days with blocking feature well-defined ridge axes over and west of much of South America, and days with the most extreme blocking (above the 99th percentile) showed upper-tropospheric ridge and cutoff low features that have been associated with extreme weather patterns. Blocking days were found to be more frequent in the first half of the period (1979–98) than the second (1999–2018) in all seasons in the west domain, whereas they seem to be more common over the eastern (peninsula) domain in 1999–2018 for austral winter, spring, and autumn, although these differences were not statistically significant. West of the Antarctic Peninsula, blocking days occur most frequently when the Antarctic Oscillation (AAO) is negative, whereas they are more frequent over the peninsula when the AAO is positive. We propose that our blocking index can be used to indicate atmospheric blocking affecting the Antarctic Peninsula, similar to how the Greenland blocking index has been used to diagnose blocking, its trends, and impacts over the Arctic.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. C. Marín, julio.marin@meteo.uv.cl

Abstract

We analyze the seasonal evolution and trends of atmospheric blocking from 1979 to 2018 using a geopotential-height-based method over two domains, one located to the west (150°–90°W, 50°–70°S) and the other over and to the east (90°–30°W, 50°–70°S) of the Antarctic Peninsula. Spatial patterns of geopotential heights on days with blocking feature well-defined ridge axes over and west of much of South America, and days with the most extreme blocking (above the 99th percentile) showed upper-tropospheric ridge and cutoff low features that have been associated with extreme weather patterns. Blocking days were found to be more frequent in the first half of the period (1979–98) than the second (1999–2018) in all seasons in the west domain, whereas they seem to be more common over the eastern (peninsula) domain in 1999–2018 for austral winter, spring, and autumn, although these differences were not statistically significant. West of the Antarctic Peninsula, blocking days occur most frequently when the Antarctic Oscillation (AAO) is negative, whereas they are more frequent over the peninsula when the AAO is positive. We propose that our blocking index can be used to indicate atmospheric blocking affecting the Antarctic Peninsula, similar to how the Greenland blocking index has been used to diagnose blocking, its trends, and impacts over the Arctic.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. C. Marín, julio.marin@meteo.uv.cl
Save