• Alexander, M., and J. Scott, 2002: The influence of ENSO on air–sea interaction in the Atlantic. J. Geophys. Res. Lett., 29, 1701, https://doi.org/10.1029/2001GL014347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881, https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 43264340, https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328, https://doi.org/10.1038/nature05053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., 2002: Impacts of El Niño and La Niña on the cycle of East Asian winter and summer monsoon (in Chinese). Chin. J. Atmos. Sci., 26, 595610, https://doi.org/10.3878/j.issn.1006-9895.2002.05.02.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, R. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and W. Chen, 2021: Roles of the North Indian Ocean SST and tropical North Atlantic SST in the latitudinal extension of the anomalous western North Pacific anticyclone during the El Niño decaying summer. J. Climate, 34, 85038517, https://doi.org/10.1175/JCLI-D-20-0802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C.-Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, https://doi.org/10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, and X. C. Wang, 2020: Re-intensification of the anomalous western North Pacific anticyclone during the El Niño Modoki decaying summer: Relative importance of tropical Atlantic and Pacific SST anomalies. J. Climate, 33, 32713288, https://doi.org/10.1175/JCLI-D-19-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, https://doi.org/10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, and B. Wu, 2015: The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms. J. Meteor. Res., 29, 562575, https://doi.org/10.1007/s13351-015-5037-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T.-C. Chang, and H.-H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 37153722, https://doi.org/10.1002/2013JD021394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 11791196, https://doi.org/10.1007/BF02656915.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., and T. Li, 2019: Relative roles of El Niño-induced extratropical and tropical forcing in generating tropical North Atlantic (TNA) SST anomaly. Climate Dyn., 53, 37913804, https://doi.org/10.1007/s00382-019-04748-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karori, M. A., J. P. Li, and F.-F. Jin, 2013: The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over southeast China. J. Climate, 26, 45674582, https://doi.org/10.1175/JCLI-D-12-00324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan pattern. J Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C. P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., W. Zhou, D. Chen, C. Y. Li, and C. Song, 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 87788792, https://doi.org/10.1175/JCLI-D-14-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z. X., and S. Conil, 2003: Transient response of an atmospheric GCM to North Atlantic SST anomalies. J. Climate, 16, 39933998, https://doi.org/10.1175/1520-0442(2003)016<3993:TROAAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and Y. Liu, 2008: On the assessment of non-local climate feedback: I: The generalized equilibrium feedback analysis. J. Climate, 21, 134148, https://doi.org/10.1175/2007JCLI1826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascolini-Campbell, M., D. Zanchettin, O. Bothe, C. Timmreck, D. Matei, J. H. Jungclaus, and H.-F. Graf, 2014: Toward a record of central Pacific El Niño events since 1880. Theor. Appl. Climatol., 119, 379389, https://doi.org/10.1007/s00704-014-1114-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M., and P. Schopf, 1988: A delayed action oscillation for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and M. H. England, 2009: El Niño Modoki impacts on Australian rainfall. J. Climate, 22, 31673174, https://doi.org/10.1175/2008JCLI2589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and H. H. Hendon, 2007: Sensitivity of Australian rainfall to inter-El Niño variations. J. Climate, 20, 42114226, https://doi.org/10.1175/JCLI4228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., and Y. Hao, 2021: Contrasting El Niño impacts on East Asian summer monsoon precipitation between its developing and decaying stages. Int. J. Climatol., 41, 23752382, https://doi.org/10.1002/joc.6964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, Q. Liu, and C. Frankignoul, 2005: Observations of SST, heat flux and North Atlantic Ocean–atmosphere interaction. Geophys. Res. Lett., 32, L24619, https://doi.org/10.1029/2005GL024871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, Q. Liu, and F. Claude, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 17391759, https://doi.org/10.1175/2009JCLI3027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, and Y. Liu, 2015: Direct impact of El Niño on East Asian summer precipitation in the observation. Climate Dyn., 44, 29792987, https://doi.org/10.1007/s00382-015-2605-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., Z. Liu, and L. Li, 2019: Direct ENSO impact on East Asian summer precipitation in the developing summer. Climate Dyn., 52, 67996815, https://doi.org/10.1007/s00382-018-4545-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, N., L. Li, and J. Luo, 2020: Direct impacts of different types of El Niño in developing summer on East Asian precipitation. Climate Dyn., 55, 10871104, https://doi.org/10.1007/s00382-020-05315-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H. Y., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., Z. Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Yu, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 462, 674, https://doi.org/10.1038/nature08546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J., L. Ou, L. Chen, L. Li, M. Sun, X. Zhong, and X. Zhang, 2021: Tropical cyclone genesis over the western North Pacific impacted by SST anomalies from other basins while El Niño decays. Quart. J. Roy. Meteor. Soc., 147, 25802596, https://doi.org/10.1002/qj.4042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., and T. Yamagata, 2014: California Niño/Niña. Sci. Rep., 4, 4801, https://doi.org/10.1038/srep04801.

  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, https://doi.org/10.1175/JCLI-D-11-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Min, and J. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Z. Wang, M. F. Stuecker, A. G. Turner, F.-F. Jin, and X. Geng, 2019: Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dyn., 52, 257274, https://doi.org/10.1007/s00382-018-4135-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., W. Bo, and D. Lu, 2014: Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia-Pac. J. Atmos. Sci., 50, 405422, https://doi.org/10.1007/s13143-014-0043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 151 150 26
Full Text Views 68 68 18
PDF Downloads 94 94 20

Response of East Asian Summer Precipitation to Intermediate SST Anomalies while El Niño Decays and Dependence on Type of Events

View More View Less
  • 1 aCenter for Ocean–Atmosphere Interaction Research (COAIR) and College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 bLaboratoire de Météorologie Dynamique, CNRS, Sorbonne Université, Ecole Normale Supérieure, Ecole Polytechnique, Paris, France
  • | 3 cNetwork Center, Nanjing University of Information Science and Technology, Nanjing, China
Restricted access

Abstract

Impacts of El Niño on the following summer East Asian precipitation are dependent on its peak-time characteristics. Three types are identified and denoted as eastern Pacific (EP), mixed-type Pacific (MP), and central Pacific (CP) El Niño. For EP, excessive rainfall occurs in the Yangtze River valley, in relation to an anomalous anticyclone over the western tropical Pacific. For MP, a dipolar precipitation with anomalous wet conditions in northern China and dry conditions in east-central China is mainly due to an anomalous cyclone over Northeast Asia and a weak anticyclone over the Sea of Japan. For the case of CP El Niño, wetness along the Yangtze–Huaihe River valley and dryness in Southeast China are ascribed to an anomalous cyclone in Northeast China and a strong anticyclone over the western tropical Pacific. It is also revealed that the precipitation anomalies are fundamentally caused by different intermediate sea surface temperature (SST) anomalies from other basins while El Niño decays in the following summer. In the case of EP El Niño, the joint action from warm SST in the tropical Indian Ocean, the Niño-1.2 region, and the North Atlantic is responsible for the delayed effect of El Niño. For MP, the main delayed effect comes from warm SST in the northeast subtropical Pacific, developing La Niña, and cold SST in the southern tropical Atlantic. Finally, CP El Niño exerts its delayed influence through warm SST in the northern tropical Atlantic.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Na Wen, wenna@nuist.edu.cn

Abstract

Impacts of El Niño on the following summer East Asian precipitation are dependent on its peak-time characteristics. Three types are identified and denoted as eastern Pacific (EP), mixed-type Pacific (MP), and central Pacific (CP) El Niño. For EP, excessive rainfall occurs in the Yangtze River valley, in relation to an anomalous anticyclone over the western tropical Pacific. For MP, a dipolar precipitation with anomalous wet conditions in northern China and dry conditions in east-central China is mainly due to an anomalous cyclone over Northeast Asia and a weak anticyclone over the Sea of Japan. For the case of CP El Niño, wetness along the Yangtze–Huaihe River valley and dryness in Southeast China are ascribed to an anomalous cyclone in Northeast China and a strong anticyclone over the western tropical Pacific. It is also revealed that the precipitation anomalies are fundamentally caused by different intermediate sea surface temperature (SST) anomalies from other basins while El Niño decays in the following summer. In the case of EP El Niño, the joint action from warm SST in the tropical Indian Ocean, the Niño-1.2 region, and the North Atlantic is responsible for the delayed effect of El Niño. For MP, the main delayed effect comes from warm SST in the northeast subtropical Pacific, developing La Niña, and cold SST in the southern tropical Atlantic. Finally, CP El Niño exerts its delayed influence through warm SST in the northern tropical Atlantic.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Na Wen, wenna@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.62 MB)
Save