• Baggett, C., and S. Lee, 2015: Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci., 72, 15621568, https://doi.org/10.1175/JAS-D-14-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C., S. Lee, and S. Feldstein, 2016: An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming. J. Atmos. Sci., 73, 43294347, https://doi.org/10.1175/JAS-D-16-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 38883906, https://doi.org/10.1175/2010JCLI3297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and E. C. van der Linden, 2013: The changing seasonal climate in the Arctic. Sci. Rep., 3, 1556, https://doi.org/10.1038/srep01556.

  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., A. A. Petty, and J. C. Stroeve, 2016: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas. Mon. Wea. Rev., 144, 42794287, https://doi.org/10.1175/MWR-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burt, M. A., D. A. Randall, and M. D. Branson, 2016: Dark warming. J. Climate, 29, 705719, https://doi.org/10.1175/JCLI-D-15-0147.1.

  • Carmack, E., and H. Melling, 2011: Cryosphere: Warmth from the deep. Nat. Geosci., 4, 78, https://doi.org/10.1038/ngeo1044.

  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., P. Gloersen, and W. J. Campbell, 1984: Determination of sea ice parameters with the Nimbus-7 SMMR. J. Geophys. Res., 89, 53555369, https://doi.org/10.1029/JD089iD04p05355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Luo, S. B. Feldstein, and S. Lee, 2018: Impact of winter Ural blocking on Arctic sea ice: Short-time variability. J. Climate, 31, 22672282, https://doi.org/10.1175/JCLI-D-17-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, D. J., and K. Y. Kim, 2021: Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter. Climate Dyn., 56, 15711588, https://doi.org/10.1007/s00382-020-05545-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., and S. B. Feldstein, 2020: What drives the North Atlantic Oscillation’s temperature anomaly pattern? Part II: A decomposition of the surface downward longwave radiation anomalies. J. Atmos. Sci., 77, 199216, https://doi.org/10.1175/JAS-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 1986: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 91, 975994, https://doi.org/10.1029/JC091iC01p00975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., Y.-K. Lim, L. N. Boisvert, L. Brucker, J. N. Lee, and S. M. J. Nowicki, 2016: Analysis of the warmest Arctic winter, 2015–2016. Geophys. Res. Lett., 43, 10 80810 816, https://doi.org/10.1002/2016GL071228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks: Its relation to atmospheric forcing. J. Climate, 7, 18971913, https://doi.org/10.1175/1520-0442(1994)007,1897:ASIVOA.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fearon, M. G., Doyle, J. D., Ryglicki, D. R., Finocchio, P. M., and Sprenger, M., 2021: The role of cyclones in moisture transport into the Arctic. Geophys. Res. Lett., 48, e2020GL090353, https://doi.org/10.1029/2020GL090353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., S. B. Feldstein, S. Lee, and E. E. Clothiaux, 2016: Exploring the tropically excited Arctic warming mechanism with station data: Links between tropical convection and Arctic downward infrared radiation. J. Atmos. Sci., 73, 11431158, https://doi.org/10.1175/JAS-D-14-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511, https://doi.org/10.1029/2006EO460001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., M. Vázquez, J. Eiras-Barca, R. Sorí, I. Algarra, and R. Nieto, 2019: Atmospheric moisture transport and the decline in Arctic sea ice. Wiley Interdiscip. Rev.: Climate Change, 10, e588, https://doi.org/10.1002/wcc.588.

    • Search Google Scholar
    • Export Citation
  • Gong, T., and D. Luo, 2017: Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 26392654, https://doi.org/10.1175/JCLI-D-16-0548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2020: Rossby wave propagation from the Arctic into the midlatitudes: Does it arise from in situ latent heating or a trans-Arctic wave train? J. Climate, 33, 36193633, https://doi.org/10.1175/JCLI-D-18-0780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., S. B. Feldstein, and S. Lee, 2016: Stationary wave interference and its relation to tropical convection and Arctic warming. J. Climate, 29, 13691389, https://doi.org/10.1175/JCLI-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, https://doi.org/10.1007/s00382-009-0535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, S. Drijfhout, M. Tjernström, and S. Mårtensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36, 21032112, https://doi.org/10.1007/s00382-010-0809-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., B. S. Barrett, and M. Lafleur, 2014: Arctic sea ice and the Madden–Julian Oscillation (MJO). Climate Dyn., 43, 21852196, https://doi.org/10.1007/s00382-013-2043-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang, 2020: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Climate, 34, 29232939, https://doi.org/10.1175/JCLI-D-20-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenney, A. M., K. M. Nardi, E. A. Barnes, and D. A. Randall, 2019: The seasonality and regionality of MJO impacts on North American temperature. Geophys. Res. Lett., 46, 91939202, https://doi.org/10.1029/2019GL083950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., S. B. Feldstein, and S. Lee, 2021: Two atmospheric responses to winter sea ice decline over the Barents-Kara Seas. Geophys. Res. Lett., 48, e2020GL090288, https://doi.org/10.1029/2020GL090288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, E., A. Devasthale, M. Tjernström, A. M. L. Ekman, and T. L’Ecuyer, 2017: Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett., 44, 25272536, https://doi.org/10.1002/2017GL072687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 1, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., and Coauthors, 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep., 7, 40051, https://doi.org/10.1038/srep40051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., and B. Kim, 2017: Relative contributions of atmospheric energy transport and sea ice loss to the recent warm Arctic winter. J. Climate, 30, 74417450, https://doi.org/10.1175/JCLI-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2005: Ross sea ice motion, area flux, and deformation. J. Climate, 18, 37593776, https://doi.org/10.1175/JCLI3507.1.

  • Lee, R. W., and S. J. Woolnough, 2019: ENSO modulation of MJO teleconnections to the North Atlantic and Europe. Geophys. Res. Lett., 46, 13 53513 545, https://doi.org/10.1029/2019GL084683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 2012: Testing of the tropically excited Arctic warming mechanism (TEAM) with traditional El Niño and La Niña. J. Climate, 25, 40154022, https://doi.org/10.1175/JCLI-D-12-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., S. B. Feldstein, D. Pollard, and T. S. White, 2011a: Do planetary wave dynamics contribute to equable climates? J. Climate, 24, 23912404, https://doi.org/10.1175/2011JCLI3825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011b: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2018: Extratropical response to the MJO: Nonlinearity and sensitivity to the initial state. J. Atmos. Sci., 75, 219234, https://doi.org/10.1175/JAS-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liptak, J., and C. Strong, 2014: The winter atmospheric response to sea ice anomalies in the Barents Sea. J. Climate, 27, 914924, https://doi.org/10.1175/JCLI-D-13-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. R. Key, S. Vavrus, and C. Woods, 2018: Time evolution of the cloud response to moisture intrusions into the Arctic during winter. J. Climate, 31, 93899405, https://doi.org/10.1175/JCLI-D-17-0896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., D. Luo, L. Wu, L. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B., and Coauthors, 2019: The winter midlatitude–Arctic interaction: Effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dyn., 52, 29813004, https://doi.org/10.1007/s00382-018-4301-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, https://doi.org/10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123 https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messori, G., C. Woods, and R. Caballero, 2018: On the drivers of wintertime temperature extremes in the high Arctic. J. Climate, 31, 15971618, https://doi.org/10.1175/JCLI-D-17-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2016: Recent extreme Arctic temperatures are due to a split polar vortex. J. Climate, 29, 56095616, https://doi.org/10.1175/JCLI-D-16-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and E. Dunn-Sigouin, 2020: What configuration of the atmospheric circulation drives extreme net and total moisture transport into the Arctic. Geophys. Res. Lett., 47, e2020GL089769, https://doi.org/10.1029/2020GL089769.

    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, https://doi.org/10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, Y. Kosaka, S.-W. Son, and S.-W. Kim, 2015a: The impact of Arctic winter infrared radiation on early summer sea ice. J. Climate, 28, 62816296, https://doi.org/10.1175/JCLI-D-14-00773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, S.-W. Son, S. B. Feldstein, and Y. Kosaka, 2015b: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate, 28, 50305040, https://doi.org/10.1175/JCLI-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., W. N. Meier, D. Scott, and M. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., and J. M. Wallace, 2004: Variations in age of Arctic sea ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, https://doi.org/10.1029/2004GL019492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett., 12, 094006, https://doi.org/10.1088/1748-9326/aa7def.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, https://doi.org/10.1175/JAS3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., K. MacRitchie, J. Asuma, and T. Melino, 2010: Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño–Southern Oscillation during boreal winter. J. Climate, 23, 40454059, https://doi.org/10.1175/2010JCLI3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, https://doi.org/10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M., and R. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolowsky, G. A., and Coauthors, 2020: Contributions to the surface downwelling longwave irradiance during Arctic winter at Utqiaġvik (Barrow), Alaska. J. Climate, 33, 45554577, https://doi.org/10.1175/JCLI-D-18-0876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495511, https://doi.org/10.1175/JCLI-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, https://doi.org/10.1175/JCLI3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, https://doi.org/10.1111/j.1600-0870.2008.00314.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 50815101, https://doi.org/10.1175/JCLI-D-19-0865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Walsh, S. Szymborski, and M. Peng, 2020: Rapid Arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies. J. Climate, 33, 15971617, https://doi.org/10.1175/JCLI-D-19-0528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., and G. Magnusdottir, 2017: Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration. J. Geophys. Res. Atmos., 122, 53165329, https://doi.org/10.1002/2016JD026324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446, https://doi.org/10.1175/JCLI-D-11-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Y. Wu, I. Simpson, K. L. Smith, X. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara sea ice loss. Sci. Adv., 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C., and E. K. Chang, 2020: The role of extratropical background flow in modulating the MJO extratropical response. J. Climate, 33, 45134536, https://doi.org/10.1175/JCLI-D-19-0708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C., E. K. Chang, H. Kim, M. Zhang, and W. Wang, 2018: Impacts of the Madden–Julian oscillation on storm-track activity, surface air temperature, and precipitation over North America. J. Climate, 31, 61136134, https://doi.org/10.1175/JCLI-D-17-0534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, L., L. Hua, and D. Luo, 2018: Local and external moisture sources for the Arctic warming over the Barents–Kara Seas. J. Climate, 31, 19631982, https://doi.org/10.1175/JCLI-D-17-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 262 260 35
Full Text Views 143 138 30
PDF Downloads 183 174 34

Turbulent Heat Flux, Downward Longwave Radiation, and Large-Scale Atmospheric Circulation Associated with Wintertime Barents–Kara Sea Extreme Sea Ice Loss Events

View More View Less
  • 1 aLamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 2 bNASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 cNASA Goddard Institute for Space Studies, New York, New York
Restricted access

Abstract

We investigate wintertime extreme sea ice loss events on synoptic to subseasonal time scales over the Barents–Kara Sea, where the largest sea ice variability is located. Consistent with previous studies, extreme sea ice loss events are associated with moisture intrusions over the Barents–Kara Sea, which are driven by the large-scale atmospheric circulation. In addition to the role of downward longwave radiation associated with moisture intrusions, which is emphasized by previous studies, our analysis shows that strong turbulent heat fluxes are associated with extreme sea ice melting events, with both turbulent sensible and latent heat fluxes contributing, although turbulent sensible heat fluxes dominate. Our analysis also shows that these events are connected to tropical convective anomalies. A dipole pattern of convective anomalies with enhanced convection over the Maritime Continent and suppressed convection over the central to eastern Pacific is consistently detected about 6–10 days prior to extreme sea ice loss events. This pattern is associated with either the Madden–Julian oscillation (MJO) or El Niño–Southern Oscillation (ENSO). Composites show that extreme sea ice loss events are connected to tropical convection via Rossby wave propagation in the midlatitudes. However, tropical convective anomalies alone are not sufficient to trigger extreme sea ice loss events, suggesting that extratropical variability likely modulates the connection between tropical convection and extreme sea ice loss events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Zheng, czheng@ldeo.columbia.edu

Abstract

We investigate wintertime extreme sea ice loss events on synoptic to subseasonal time scales over the Barents–Kara Sea, where the largest sea ice variability is located. Consistent with previous studies, extreme sea ice loss events are associated with moisture intrusions over the Barents–Kara Sea, which are driven by the large-scale atmospheric circulation. In addition to the role of downward longwave radiation associated with moisture intrusions, which is emphasized by previous studies, our analysis shows that strong turbulent heat fluxes are associated with extreme sea ice melting events, with both turbulent sensible and latent heat fluxes contributing, although turbulent sensible heat fluxes dominate. Our analysis also shows that these events are connected to tropical convective anomalies. A dipole pattern of convective anomalies with enhanced convection over the Maritime Continent and suppressed convection over the central to eastern Pacific is consistently detected about 6–10 days prior to extreme sea ice loss events. This pattern is associated with either the Madden–Julian oscillation (MJO) or El Niño–Southern Oscillation (ENSO). Composites show that extreme sea ice loss events are connected to tropical convection via Rossby wave propagation in the midlatitudes. However, tropical convective anomalies alone are not sufficient to trigger extreme sea ice loss events, suggesting that extratropical variability likely modulates the connection between tropical convection and extreme sea ice loss events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Zheng, czheng@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 19.7 MB)
Save