• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., R. Murtugudde, J. Potemra, S.-P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Potemra, R. Murtugudde, and J. P. McCreary, 2005: Effect of preconditioning on the extreme climate events in the tropical Indian Ocean. J. Climate, 18, 34503469, https://doi.org/10.1175/JCLI3494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, https://doi.org/10.1029/2001GL013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: ACGCM study. J. Climate, 18, 45144530, https://doi.org/10.1175/JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 7494, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, M. M., V. Resco de Dios, and R. A. Bradstock, 2020: Unprecedented burn area of Australian mega forest fires. Nat. Climate Change, 10, 171172, https://doi.org/10.1038/s41558-020-0716-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., G. Meyers, and G. Shi, 2005: Transmission of ENSO signal to the Indian Ocean. Geophys. Res. Lett., 32, L05616, https://doi.org/10.1029/2004GL021736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Pan, D. Roemmich, T. Cowan, and X. Guo, 2009a: Argo profiles a rare occurrence of three consecutive positive Indian Ocean dipole events, 2006–2008. Geophys. Res. Lett., 36, L08701, https://doi.org/10.1029/2008GL037038.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and M. Raupach, 2009b: Positive Indian Ocean dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, https://doi.org/10.1029/2009GL039902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. D. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, https://doi.org/10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2018: Stabilised frequency of extreme positive Indian Ocean dipole under 1.5°C warming. Nat. Commun., 9, 1419, https://doi.org/10.1038/s41467-018-03789-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. H. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24, 888903, https://doi.org/10.1175/1520-0485(1994)024<0888:WEITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 21952216, https://doi.org/10.1175/1520-0442(2000)013<2195:TEOLSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Ni Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Du, Z. Wen, R. Wu, and S.-P. Xie, 2019: Evolution of south tropical Indian Ocean warming and the climatic impacts following strong El Niño events. J. Climate, 32, 73297347, https://doi.org/10.1175/JCLI-D-18-0704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K.-M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., W. Cai, and Y. Wu, 2013: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, https://doi.org/10.1175/JCLI-D-12-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, L.-Y. Zhang, T. Tozuka, B. Ng, and W. Cai, 2020: Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophys. Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean dipole. Deep-Sea Res. II, 50, 22632284, https://doi.org/10.1016/S0967-0645(03)00056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2010: Interaction between the Atlantic meridional and Niño modes. Geophys. Res. Lett., 37, L18604, https://doi.org/10.1029/2010GL044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F., Q. Liu, S. Sun, and J. Yang, 2015: Three types of Indian Ocean dipoles. J. Climate, 28, 30733092, https://doi.org/10.1175/JCLI-D-14-00507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., R. R. Leben, R. S. Nerem, W. Han, and K.-Y. Kim, 2011: Reconstructing sea level using cyclostationary empirical orthogonal functions. J. Geophys. Res., 116, C12015, https://doi.org/10.1029/2011JC007529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-M. Lu, and M. Kanamitsu, 2008: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res., 113, D08107, https://doi.org/10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Matsuura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño-Southern Oscillation coupling. J. Geophys. Res., 106, 46814693, https://doi.org/10.1029/2000JD900610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, https://doi.org/10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. S. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16, 16171642, https://doi.org/10.1175/1520-0442(2003)016<1617:TAMTTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, B., and H.-L. Ren, 2020: What caused the extreme Indian Ocean dipole event in 2019? Geophys. Res. Lett., 47, e2020GL087768, https://doi.org/10.1029/2020GL087768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and H. Xu, 2017: Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 91679181, https://doi.org/10.1175/JCLI-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., and A. Lazar, 2019: Is the boreal spring tropical Atlantic variability a precursor of the equatorial mode? Climate Dyn., 53, 23392353, https://doi.org/10.1007/s00382-019-04851-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn., 42, 15691586, https://doi.org/10.1007/s00382-013-1765-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and TBO. J. Climate, 16, 21382158, https://doi.org/10.1175/2767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G. A., P. C. McIntosh, L. Pigot, and M. J. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, and R. Zhang, 2017: Impact of the South and North Pacific meridional modes on the El Niño–Southern Oscillation: Observational analysis and comparison. J. Climate, 30, 17051720, https://doi.org/10.1175/JCLI-D-16-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary Jr., T. G. Jensen, D. Sengupta, and R. Senan, 2006: Dynamics of biweekly oscillations in the equatorial Indian Ocean. J. Phys. Oceanogr., 36, 827846, https://doi.org/10.1175/JPO2897.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary Jr., and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–98. J. Geophys. Res., 105, 32953306, https://doi.org/10.1029/1999JC900294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and H. S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657676, https://doi.org/10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, https://doi.org/10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, R. H., M. M. Boer, L. Collins, V. Resco de Dios, H. Clarke, M. Jenkins, B. Kenny, and R. A. Bradstock, 2020: Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Global Change Biol., 26, 10391041, https://doi.org/10.1111/gcb.14987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., and S.-P. Xie, 2011: Semiannual cycle in zonal wind over the equatorial Indian Ocean. J. Climate, 24, 64716485, https://doi.org/10.1175/2011JCLI4243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, https://doi.org/10.1175/JCLI-D-13-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, Y., W. Cai, X. Guo, and B. Ng, 2014: The asymmetric influence of the positive and negative IOD events on China’s rainfall. Sci. Rep., 4, 4943, https://doi.org/10.1038/srep04943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31, L19306, https://doi.org/10.1029/2004GL020842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39, 103135, https://doi.org/10.1016/j.dynatmoce.2004.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res., 49, 15491572, https://doi.org/10.1016/S0967-0645(01)00158-8.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., J.-J. Luo, S. K. Behera, and T. Yamagata, 2008: Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Climate Dyn., 33, 751767, https://doi.org/10.1007/s00382-008-0498-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climate variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488, https://doi.org/10.1029/1999GL900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., and Coauthors, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., J. Lan, Y. Fang, Tana, and X. Gao, 2015: A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J. Climate, 28, 50635076, https://doi.org/10.1175/JCLI-D-14-00580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vinayachandran, P. N., P. A. Francis, and S. A. Rao, 2010: Indian Ocean dipole: Processes and impacts. Current Trends in Science, N. Mukunda, Ed., Indian Academy of Sciences, 569589, https://www.ias.ac.in/public/Resources/Other_Publications/Overview/Current_Trends/569-589.pdf.

    • Search Google Scholar
    • Export Citation
  • Wang, G., W. Cai, K. Yang, A. Santoso, and T. Yamagata, 2020: A unique feature of the 2019 extreme positive Indian Ocean dipole event. Geophys. Res. Lett., 47, e2020GL088615, https://doi.org/10.1029/2020GL088615.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., J. Scott, R. Hoffman, M. Leidner, R. Atlas, and J. Ardizzone, 2015: Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, version 2.0. Remote Sensing Systems, accessed 1 June 2020, www.remss.com/measurements/ccmp.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, https://doi.org/10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J.-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189212.

    • Search Google Scholar
    • Export Citation
  • Yang, K., W. Cai, G. Huang, G. Wang, B. Ng, and S. Li, 2020: Oceanic processes in ocean temperature products key to a realistic presentation of positive Indian Ocean dipole nonlinearity. Geophys. Res. Lett., 46, e2020GL089396, https://doi.org/10.1029/2020GL089396.

    • Search Google Scholar
    • Export Citation
  • Yokoi, T., T. Tozuka, and T. Yamagata, 2012: Seasonal and interannual variations of the SST above the Seychelles Dome. J. Climate, 25, 800814, https://doi.org/10.1175/JCLI-D-10-05001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., and J. C. Furtado, 2018: The South Pacific meridional mode and its role in tropical Pacific climate variability. J. Climate, 31, 10 14110 163, https://doi.org/10.1175/JCLI-D-17-0860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W. D., B. Q. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, https://doi.org/10.1029/2005GL024327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D. L., and H. Liu, 2009: Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 11151132, https://doi.org/10.1175/2008JPO3900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Clement, and P. D. Nezio, 2014: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, https://doi.org/10.1175/JCLI-D-13-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L.-Y., Y. Du, and W. Cai, 2018: Low-frequency variability and the unusual Indian Ocean dipole events in 2015 and 2016. Geophys. Res. Lett., 45, 10401048, https://doi.org/10.1002/2017GL076003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L.-Y., Y. Du, W. Cai, Z. Chen, T. Tozuka, and J.-Y. Yu, 2020: Triggering the Indian Ocean dipole from the Southern Hemisphere. Geophys. Res. Lett., 47, e2020GL088648, https://doi.org/10.1029/2020GL088648.

    • Search Google Scholar
    • Export Citation
  • Zhong, A., H. H. Hendon, and O. Alves, 2005: Indian Ocean variability and its association with ENSO in a global coupled model. J. Climate, 18, 36343649, https://doi.org/10.1175/JCLI3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 170 168 22
Full Text Views 95 94 30
PDF Downloads 113 112 35

Oceanic Rossby Waves Induced Two Types of Ocean–Atmosphere Response and Opposite Indian Ocean Dipole Phases

View More View Less
  • 1 aState Key Laboratory of Tropical Oceanography and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 bCollege of Marine Science, University of Chinese Academy of Sciences, Beijing, China
  • | 3 cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Restricted access

Abstract

This study analyzed the downwelling Rossby waves in the south Indian Ocean (IO)-induced spring asymmetric mode and the relationship with the Indian Ocean dipole (IOD) event based on observations and reanalysis datasets. The westward downwelling Rossby waves favor significant sea surface temperature (SST) warming in the Seychelles thermocline dome that triggers atmosphere response and the asymmetric mode in spring. The zonal sea level pressure gradient causes anomalous easterly winds in the central and eastern equatorial IO, cooling the SST off Sumatra–Java. Meanwhile, the remainder of the downwelling Rossby waves reach the west coast, transform to northward coastal-trapped waves, and then reflect as eastward downwelling Kelvin waves along the equator. The downwelling Kelvin waves reach the Sumatra–Java coast during late spring to early summer, favoring SST warming in the southeastern tropical Indian Ocean. Thus, there are two types of ocean–atmosphere response almost at the same time along the equator. The final SST status depends on which process is stronger and, as a consequence, triggers a negative or a positive phase of the IOD event in the fall season. The results show four positive and three negative IOD events related to the above processes from 1960 to 2019. The strong downwelling Rossby waves are easier to induce an intense asymmetric mode and negative IOD event, usually associated with preceding strong El Niño in the Pacific. In contrast, the weak downwelling Rossby waves tend to induce a weak asymmetric mode and positive IOD event, usually associated with preceding weak El Niño or anomalous anticyclonic atmospheric circulation in the southeastern IO.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Y. Du, duyan@scsio.ac.cn

Abstract

This study analyzed the downwelling Rossby waves in the south Indian Ocean (IO)-induced spring asymmetric mode and the relationship with the Indian Ocean dipole (IOD) event based on observations and reanalysis datasets. The westward downwelling Rossby waves favor significant sea surface temperature (SST) warming in the Seychelles thermocline dome that triggers atmosphere response and the asymmetric mode in spring. The zonal sea level pressure gradient causes anomalous easterly winds in the central and eastern equatorial IO, cooling the SST off Sumatra–Java. Meanwhile, the remainder of the downwelling Rossby waves reach the west coast, transform to northward coastal-trapped waves, and then reflect as eastward downwelling Kelvin waves along the equator. The downwelling Kelvin waves reach the Sumatra–Java coast during late spring to early summer, favoring SST warming in the southeastern tropical Indian Ocean. Thus, there are two types of ocean–atmosphere response almost at the same time along the equator. The final SST status depends on which process is stronger and, as a consequence, triggers a negative or a positive phase of the IOD event in the fall season. The results show four positive and three negative IOD events related to the above processes from 1960 to 2019. The strong downwelling Rossby waves are easier to induce an intense asymmetric mode and negative IOD event, usually associated with preceding strong El Niño in the Pacific. In contrast, the weak downwelling Rossby waves tend to induce a weak asymmetric mode and positive IOD event, usually associated with preceding weak El Niño or anomalous anticyclonic atmospheric circulation in the southeastern IO.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Y. Du, duyan@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.51 MB)
Save