• Annamalai, H., R. Murtugudde, J. Potemra, S.-P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., X. T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, https://doi.org/10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 138, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., C. Gnanaseelan, J. S. Chowdary, and J.-J. Luo, 2014: Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. Oceans, 119, 51055122, https://doi.org/10.1002/2013JC009713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deepa, J. S., C. Gnanaseelan, S. Mohapatra, J. S. Chowdary, A. Karmakar, R. Kakatkar, and A. Parekh, 2019: The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Climate Dyn., 52, 50455058, https://doi.org/10.1007/s00382-018-4431-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, and A. Hu, 2006: Interpretation of tropical thermocline cooling in the Indian and Pacific Oceans during recent decades. Geophys. Res. Lett., 33, L23615, https://doi.org/10.1029/2006GL027982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Huang, B., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 2026, https://doi.org/10.1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Jin, X., Y.-O. Kwon, C. C. Ummenhofer, H. Seo, F. U. Schwarzkopf, A. Biastoch, C. W. Böning, and J. S. Wright, 2018: Influences of Pacific climate variability on decadal subsurface ocean heat content variations in the Indian Ocean. J. Climate, 31, 41574174, https://doi.org/10.1175/JCLI-D-17-0654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karmakar, A., A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2018: Intercomparison of tropical Indian Ocean features in different ocean reanalysis products. Climate Dyn., 51, 119141, https://doi.org/10.1007/s00382-017-3910-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2015: Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic. Quart. J. Roy. Meteor. Soc., 141, 166184, https://doi.org/10.1002/qj.2347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35, L01605, https://doi.org/10.1029/2007GL032419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., Y. Zhang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2425, https://doi.org/10.1029/2002GL015789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Han, 2015: Decadal sea level variations in the Indian Ocean investigated with HYCOM: Roles of climate modes, ocean internal variability, and stochastic wind forcing. J. Climate, 28, 91439165, https://doi.org/10.1175/JCLI-D-15-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, A. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Climate, 31, 78637884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., W. Yu, and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 49414958, https://doi.org/10.1175/2011JCLI4041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., S. P. Xie, X. T. Zheng, T. Li, Y. Du, G. Huang, and W. D. Yu, 2014: Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Climate Dyn., 43, 17151730, https://doi.org/10.1007/s00382-013-2000-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7, 10926, https://doi.org/10.1038/ncomms10926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, https://doi.org/10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., C. Gnanaseelan, and J. S. Deepa, 2020: Multidecadal to decadal variability in the equatorial Indian Ocean subsurface temperature and the forcing mechanisms. Climate Dyn., 54, 34753487, https://doi.org/10.1007/s00382-020-05185-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieves, V., J. K. Willis, and W. C. Patzert, 2015: Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, 349, 532535, https://doi.org/10.1126/science.aaa4521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayantani, O., and C. Gnanaseelan, 2015: Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Climate Dyn., 44, 24472462, https://doi.org/10.1007/s00382-014-2379-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., Y. Fang, and B. Liu, 2014: Dynamical mechanisms for asymmetric SSTA patterns associated with some Indian Ocean dipoles. J. Geophys. Res. Oceans, 119, 30763097, https://doi.org/10.1002/2013JC009651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., Y. Fang, L. Liu, H. Wang, Y. Liu, and M. Zhang, 2021: Regime shift in the decadal variability of the Indian Ocean subsurface temperature. J. Mar. Syst., 216, 103511, https://doi.org/10.1016/j.jmarsys.2021.103511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., A. L. Gordon, and Q. Zheng, 2001: Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett., 28, 15991602, https://doi.org/10.1029/2000GL011844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., T. S. Moore II, and J. Marra, 2006: Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochem. Geophys. Geosyst., 7, Q05021, https://doi.org/10.1029/2005GC001009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., C. G. Piecuch, M. A. Merrifield, J. P. McCreary, and E. Firing, 2016: Forcing of recent decadal variability in the equatorial and north Indian Ocean. J. Geophys. Res. Oceans, 121, 67626778, https://doi.org/10.1002/2016JC012132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2008: Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett., 35, L17602, https://doi.org/10.1029/2008GL034687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2013: Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J. Geophys. Res. Oceans, 118, 381398, https://doi.org/10.1029/2012JC008317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Biastoch, and C. W. Böning, 2017: Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Climate, 30, 17391751, https://doi.org/10.1175/JCLI-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, https://doi.org/10.1126/science.181.4096.262.

  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X. T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., W. Yu, Y. Yuan, X. Zhao, F. Wang, G. Chen, L. Liu, and Y. Duan, 2015: Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. J. Geophys. Res. Oceans, 120, 67336750, https://doi.org/10.1002/2015JC011130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G., X. Zhao, Y. Li, L. Liu, F. Wang, and W. Yu, 2019: Chlorophyll variability induced by mesoscale eddies in the southeastern tropical Indian Ocean. J. Mar. Syst., 199, 103209, https://doi.org/10.1016/j.jmarsys.2019.103209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, X. T., S.-P. Xie, and Q. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 61466164, https://doi.org/10.1175/2011JCLI4169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 96 95 19
Full Text Views 60 60 11
PDF Downloads 71 71 12

Seasonal Differences of Decadal Thermocline Depth Anomalies in the Tropical Indian Ocean

View More View Less
  • 1 aFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
  • | 2 bLaboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China
Restricted access

Abstract

The thermocline depth in the tropical Indian Ocean has experienced dramatic decadal variations in recent decades. Using analysis and reanalysis datasets, we find that the decadal thermocline depth anomalies show large seasonal differences. The seasonal differences are modulated by two major modes. The first mode shows a zonal dipole pattern, with opposite thermocline depth anomalies in the equatorial eastern Indian Ocean and western Indian Ocean, and is prominent in summer and winter. The second mode is characterized by marked thermocline depth anomalies in the southern Indian Ocean and is significant in spring and fall. The amplitude of the seasonal oscillation in these two modes has increased substantially in the twenty-first century. Their phase change is in good agreement with the observed thermocline depth anomalies in each season. The results also show that the seasonality of the decadal thermocline depth anomalies arises directly from surface wind variations within the Indian Ocean. The first mode is mainly caused by equatorial zonal wind anomalies. The second mode is dominated by local wind stress curl anomalies. These wind anomalies are both significantly correlated with the ENSO-like SST anomalies in the Pacific Ocean. The findings improve our understanding of the decadal thermocline anomalies, and will help to better evaluate their impact on seasonal phase-locked oceanic and atmospheric processes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuangwen Sun, ssun@fio.org.cn

Abstract

The thermocline depth in the tropical Indian Ocean has experienced dramatic decadal variations in recent decades. Using analysis and reanalysis datasets, we find that the decadal thermocline depth anomalies show large seasonal differences. The seasonal differences are modulated by two major modes. The first mode shows a zonal dipole pattern, with opposite thermocline depth anomalies in the equatorial eastern Indian Ocean and western Indian Ocean, and is prominent in summer and winter. The second mode is characterized by marked thermocline depth anomalies in the southern Indian Ocean and is significant in spring and fall. The amplitude of the seasonal oscillation in these two modes has increased substantially in the twenty-first century. Their phase change is in good agreement with the observed thermocline depth anomalies in each season. The results also show that the seasonality of the decadal thermocline depth anomalies arises directly from surface wind variations within the Indian Ocean. The first mode is mainly caused by equatorial zonal wind anomalies. The second mode is dominated by local wind stress curl anomalies. These wind anomalies are both significantly correlated with the ENSO-like SST anomalies in the Pacific Ocean. The findings improve our understanding of the decadal thermocline anomalies, and will help to better evaluate their impact on seasonal phase-locked oceanic and atmospheric processes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuangwen Sun, ssun@fio.org.cn
Save