• Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bang, N. K., W. H. Nam, E. M. Hong, J. H. Michael, and D. S. Mark, 2018: Assessment of the meteorological characteristics and statistical drought frequency for the extreme 2017 spring drought event across South Korea. J. Korean Soc. Agric. Eng., 60, 3748, https://doi.org/10.5389/KSAE.2018.60.4.037.

    • Search Google Scholar
    • Export Citation
  • Boer, M. M., V. R. de Dios, and R. A. Bradstock, 2020: Unprecedented burn area of Australian mega forest fires. Nat. Climate Change, 10, 171172, https://doi.org/10.1038/s41558-020-0716-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., Deser, C., Phillips, A. S., Okumura, Y., and Larson, S. M., 2020: ENSO and Pacific decadal variability in the Community Earth System Model version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., K. J. Anchukaitis, B. M. Buckley, R. D. D’Arrigo, G. C. Jacoby, and W. E. Wright, 2010: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486489, https://doi.org/10.1126/science.1185188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, G., H. Zhang, X. Guo, and H. Ying, 2018: Assessment of drought in Democratic People’s Republic of Korea in 2017 using TRMM data. 2018 Fifth Int. Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, IEEE, 15, https://doi.org/10.1109/EORSA.2018.8598557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2018: Unusually warm Indian Ocean sea surface temperatures help to arrest development of El Niño in 2014. Sci. Rep., 8, 2249, https://doi.org/10.1038/s41598-018-20294-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735, https://doi.org/10.1029/96WR03756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

  • Ha, K. J., S. S. Lee, P. N. Vinayachandran, and J. G. Jhun, 2010: Changma and shifting peak in summer rainfall of Korea: ENSO influence. Atmospheric Science, Vol. 16, Advances in Geosciences, World Scientific, 3545, https://www.worldscientific.com/doi/abs/10.1142/9789812838100_0004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. S. Kug, and I. S. Kang, 2007: Role of moist energy advection in formulating anomalous Walker circulation associated with El Niño. J. Geophys. Res., 112, D24105, https://doi.org/10.1029/2007JD008744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. S. Kug, S. W. Yeh, and M. Kwon, 2016: Impact of two distinct teleconnection patterns induced by western central Pacific SST anomalies on Korean temperature variability during the early boreal summer. J. Climate, 29, 743759, https://doi.org/10.1175/JCLI-D-15-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., Y. Chikamoto, J. S. Kug, M. Kimoto, and T. Mochizuki, 2017: Tropical Atlantic–Korea teleconnection pattern during boreal summer season. Climate Dyn., 49, 26492664, https://doi.org/10.1007/s00382-016-3474-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., Y. Hwang, Y. K. Lim, and M. Kwon, 2018: Inter-decadal variation of the tropical Atlantic–Korea (TA-K) teleconnection pattern during boreal summer season. Climate Dyn., 51, 26092621, https://doi.org/10.1007/s00382-017-4031-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1999: Monitoring the 1996 drought using the standardized precipitation index. Bull. Amer. Meteor. Soc., 80, 429438, https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, and A. Horányi, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, https://doi.org/10.1126/science.1079053.

  • Hoerling, M., and Coauthors, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, https://doi.org/10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y. H., A. Kawamura, K. Jinno, and R. Berndtsson, 2005: Detection of ENSO. Hydrol. Processes, 19, 40814092, https://doi.org/10.1002/hyp.5873.

  • Kim, J.-S., and J. S. Kug, 2019: Role of off-equatorial SST in El Niño teleconnection to East Asia during El Niño decaying spring. Climate Dyn., 52, 72937308, https://doi.org/10.1007/s00382-016-3473-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2020: Understanding reintensified multiyear El Niño events. Geophys. Res. Lett., 47, e2020GL087644, https://doi.org/10.1029/2020GL087644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño–Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957971, https://doi.org/10.1007/s00382-013-1730-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S., and J. S. Kug, 2021: Delayed impact of Indian Ocean warming on the East Asian surface temperature variation in boreal summer. J. Climate, 34, 32553270, https://doi.org/10.1175/JCLI-D-20-0691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, F., and W. Guo, 2015: 2006–2015 mega-drought in the western USA and its monitoring from space data. Geomatics Nat. Hazards Risk, 6, 651668, https://doi.org/10.1080/19475705.2015.1079265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467474, https://doi.org/10.1007/s13143-010-0027-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, H. H., U. Lall, and S. J. Kim, 2016: The unusual 2013–2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. Geophys. Res. Lett., 43, 85348544, https://doi.org/10.1002/2016GL070270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. H., and P. Y. Julien, 2016: ENSO impacts on temperature over South Korea. Int. J. Climatol., 36, 36513663, https://doi.org/10.1002/joc.4581.

  • Lee, S.-H., K.-H. Seo, and M. Kwon, 2019: Combined effects of El Niño and the Pacific decadal oscillation on summertime circulation over East Asia. Asia-Pac. J. Atmos. Sci., 55, 9199, https://doi.org/10.1007/s13143-018-00103-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2018: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., R. M. Kovach, S. Pawson, and G. Vernieres, 2017: The 2015/16 El Niño event in context of the MERRA-2 reanalysis: A comparison of the tropical Pacific with 1982/83 and 1997/98. J. Climate, 30, 48194842, https://doi.org/10.1175/JCLI-D-16-0800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., J. H. Oh, and B. J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Shields, J. M. Arblaster, H. Annamalai, and R. Neale, 2020: Intraseasonal, seasonal, and interannual characteristics of regional monsoon simulations in CESM2. J. Adv. Model. Earth Syst., 12, e2019MS001962, https://doi.org/10.1029/2019MS001962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 67626770, https://doi.org/10.1002/2015GL064899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2011: Drought onset and recovery over the United States. J. Geophys. Res., 116, D20106, https://doi.org/10.1029/2011JD016168.

  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 18331837, https://doi.org/10.1073/pnas.0906531107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., J. Rhee, and C. Yoo, 2020: Long-lead predictions of warm season droughts in South Korea using North Atlantic SST. J. Climate, 33, 46594677, https://doi.org/10.1175/JCLI-D-19-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, W. H., E. M. Hong, J. Y. Choi, T. Kim, M. J. Hayes, and M. D. Svoboda, 2017: Assessment of the extreme 2014–2015 drought events in North Korea using weekly standardized precipitation evapotranspiration index (SPEI). J. Korean Soc. Agric. Eng., 59, 6574, https://doi.org/10.5389/KSAE.2017.59.4.065.

    • Search Google Scholar
    • Export Citation
  • Newman, M., A. T. Wittenberg, L. Cheng, G. P. Compo, and C. A. Smith, 2018: The extreme 2015/16 El Niño, in the context of historical climate variability and change. Bull. Amer. Meteor. Soc., 99, S16S20, https://doi.org/10.1175/BAMS-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborne, J. M., M. Collins, J. A. Screen, S. I. Thomson, and N. Dunstone, 2020: The North Atlantic as a driver of summer atmospheric circulation. J. Climate, 33, 73357351, https://doi.org/10.1175/JCLI-D-19-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall with a model of the land–atmosphere system. J. Climate, 14, 12271242, https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C. K., C. H. Ho, D. S. R. Park, T. W. Park, and J. Kim, 2020: Interannual variations of spring drought-prone conditions over three subregions of East Asia and associated large-scale circulations. Theor. Appl. Climatol., 142, 11171131, https://doi.org/10.1007/s00704-020-03371-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J.-B., 2014: An investigation of the formation of the heat wave in southern China in summer 2013 and the relevant abnormal subtropical high activities. Atmos. Oceanic Sci. Lett., 7, 286290, https://doi.org/10.3878/j.issn.1674-2834.13.0097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, A. J., E. Walter-Shea, A. Vina, M. Hayes, and M. D. Svoboda, 2002: Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens., 68, 7175.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, 1986: Numerical Recipes. Cambridge University Press, 123128.

  • Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn., 12, 13931411, https://doi.org/10.5194/esd-12-1393-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, J. K., C. R. Ferguson, and E. F. Wood, 2013: Temporal variability of land–atmosphere coupling and its implications for drought over the southeast United States. J. Hydrometeor., 14, 622635, https://doi.org/10.1175/JHM-D-12-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sattar, M. N., J. Y. Lee, J. Y. Shin, and T. W. Kim, 2019: Probabilistic characteristics of drought propagation from meteorological to hydrological drought in South Korea. Water Resour. Manage., 33, 24392452, https://doi.org/10.1007/s11269-019-02278-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2008: Potential predictability of long-term drought and pluvial conditions in the United States Great Plains. J. Climate, 21, 802816, https://doi.org/10.1175/2007JCLI1741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, https://doi.org/10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, M. J. Suarez, and P. Ya. Groisman, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, https://doi.org/10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., A. Tzanova, and J. Nakamura, 2009: Drought in the southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. J. Climate, 22, 50215045, https://doi.org/10.1175/2009JCLI2683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and Coauthors, 2020: An evaluation of the large-scale atmospheric circulation and its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos., 125, e2020JD032835, https://doi.org/10.1029/2020JD032835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, H.-Y., J.-Y. Park, J.-S. Kug, J. Yoo, and C.-H. Kim, 2014: Winter precipitation variability over Korean Peninsula associated with ENSO. Climate Dyn., 42, 31713186, https://doi.org/10.1007/s00382-013-2008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, H.-Y., J.-Y. Park, and J.-S. Kug, 2016: Precipitation variability in September over the Korean Peninsula during ENSO developing phase. Climate Dyn., 46, 34193430, https://doi.org/10.1007/s00382-015-2776-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., W.-T. Kwon, H.-J. Baek, K.-O. Boo, G.-H. Lim, and J.-S. Kug, 2006: A possible impact of the North Atlantic Oscillation on the East Asian summer monsoon precipitation. Geophys. Res. Lett., 33, L21713, https://doi.org/10.1029/2006GL027253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., and G. Laaha, 2015: Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol., 526, 314, https://doi.org/10.1016/j.jhydrol.2014.10.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, J. Yang, T. Zhou, and Z. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 38643875, https://doi.org/10.1175/2009JCLI2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. Schubert, 2014: Causes of the extreme dry conditions over California during early 2013 [in “Explaining Extreme Events of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S7S11, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2015: The north China/northeastern Asia severe summer drought in 2014. J. Climate, 28, 66676681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and X. Yuan, 2018: Two types of flash drought and their connections with seasonal drought. Adv. Atmos. Sci., 35, 14781490, https://doi.org/10.1007/s00376-018-8047-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Yuan, and Y. Li, 2017: Does a strong El Niño imply a higher predictability of extreme drought? Sci. Rep., 7, 40741, https://doi.org/10.1038/srep40741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. Y. S., and Coauthors, 2015: An intensified seasonal transition in the Central U.S. that enhances summer drought. J. Geophys. Res. Atmos., 120, 88048816, https://doi.org/10.1002/2014JD023013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. L. Kinter III, 2009: Analysis of the relationship of U.S. droughts with SST and soil moisture: Distinguishing the time scale of droughts. J. Climate, 22, 45204538, https://doi.org/10.1175/2009JCLI2841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., K. Tu, Z. Yan, and Y. Qi, 2016: The super-heat wave in eastern China during July–August 2013: A perspective of climate change. Int. J. Climatol., 36, 12911298, https://doi.org/10.1002/joc.4424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., Y. J. Won, J. S. Hong, K. J. Lee, M. Kwon, K. H. Seo, and Y. G. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 14631474, https://doi.org/10.1175/MWR-D-17-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, S. R., S. W. Yeh, and W. S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos., 124, 74987511, https://doi.org/10.1029/2018JD030170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, D., X. Yuan, and J. K. Roundy, 2019: Effect of teleconnected land–atmosphere coupling on Northeast China persistent drought in spring–summer of 2017. J. Climate, 32, 74037420, https://doi.org/10.1175/JCLI-D-19-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., and Coauthors, 2020: Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370, 10951099, https://doi.org/10.1126/science.abb3368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Z. Huang, F. Jiang, M. F. Stuecker, G. Chen, and F.-F. Jin, 2021: Exceptionally persistent Madden–Julian oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 227 221 24
Full Text Views 62 61 10
PDF Downloads 76 74 11

Large-Scale Sea Surface Temperature Forcing Contributed to the 2013–17 Record-Breaking Meteorological Drought in the Korean Peninsula

View More View Less
  • 1 aDepartment of Oceanography, Chonnam National University, Gwangju, South Korea
  • | 2 bInternational Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Hawaii
  • | 3 cMinistry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
Restricted access

Abstract

This study examined the contribution of the Pacific decadal oscillation (PDO) to the record-breaking 2013–17 drought in the Korean Peninsula. The meteorological drought signal, measured by the Standardized Precipitation Index (SPI), in 2013 and 2016 co-occurred with a heat wave. The positive phase of the PDO during the mid-2010s was responsible for the precipitation deficit, particularly in 2014, 2015, and 2017, resulting in 5 years of meteorological drought. The enhanced atmospheric heating anomalies over the subtropical central Pacific, induced by the in situ PDO-related sea surface temperature (SST) warming, led to a low-atmospheric cyclonic flow centered over the midlatitude Pacific. The northerly wind anomalies at the western edge of this low-level cyclonic flow were responsible for the horizontal negative advection of moist energy, which contributed to the decreased precipitation and the resultant negative SPI over the Korean Peninsula in 2014, 2015, and 2017. The large-ensemble simulation supported the observational findings that the composited SST anomalies during the 5 years of persistent drought exhibited prominent and persistent SST warming over the subtropical central Pacific, along with large-scale cyclonic flow over the North Pacific. The findings of this study imply that the SST anomalies over the North Pacific and subtropical central Pacific can be a predictable source to potentially increase the ability to forecast multiyear droughts over the Korean Peninsula.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yoo-Geun Ham, ygham@jnu.ac.kr

Abstract

This study examined the contribution of the Pacific decadal oscillation (PDO) to the record-breaking 2013–17 drought in the Korean Peninsula. The meteorological drought signal, measured by the Standardized Precipitation Index (SPI), in 2013 and 2016 co-occurred with a heat wave. The positive phase of the PDO during the mid-2010s was responsible for the precipitation deficit, particularly in 2014, 2015, and 2017, resulting in 5 years of meteorological drought. The enhanced atmospheric heating anomalies over the subtropical central Pacific, induced by the in situ PDO-related sea surface temperature (SST) warming, led to a low-atmospheric cyclonic flow centered over the midlatitude Pacific. The northerly wind anomalies at the western edge of this low-level cyclonic flow were responsible for the horizontal negative advection of moist energy, which contributed to the decreased precipitation and the resultant negative SPI over the Korean Peninsula in 2014, 2015, and 2017. The large-ensemble simulation supported the observational findings that the composited SST anomalies during the 5 years of persistent drought exhibited prominent and persistent SST warming over the subtropical central Pacific, along with large-scale cyclonic flow over the North Pacific. The findings of this study imply that the SST anomalies over the North Pacific and subtropical central Pacific can be a predictable source to potentially increase the ability to forecast multiyear droughts over the Korean Peninsula.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yoo-Geun Ham, ygham@jnu.ac.kr
Save