• Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., and K. I. Hodges, 2019: Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? Climate Dyn., 52, 35533573, https://doi.org/10.1007/s00382-018-4343-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno, 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, https://doi.org/10.1029/2003GL018597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., S. Gui, Q. Su, and Y. Yang, 2016: The variability of the Indian–East Asian summer monsoon interface in relation to the spring seesaw mode between the Indian Ocean and the central-western Pacific. J. Climate, 29, 50275040, https://doi.org/10.1175/JCLI-D-15-0839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., W. K. Zhang, and Y. Tao, 2017: Thermal configuration of the Bay of Bengal–Tibetan Plateau region and the May precipitation anomaly in Yunnan. J. Climate, 30, 93039319, https://doi.org/10.1175/JCLI-D-16-0802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cen, S. X., W. Chen, S. F. Chen, Y. Y. Liu, and T. J. Ma, 2020: Potential impact of atmospheric heating over east Europe on the zonal shift in the South Asian high: The role of the Silk Road teleconnection. Sci. Rep., 10, 6543, https://doi.org/10.1038/s41598-020-63364-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. P. Li, Y.-H. Tseng, and C. Q. Ruan, 2015a: Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J. Geophys. Res. Atmos., 120, 964979, https://doi.org/10.1002/2014JD022364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. P. Li, Y.-H. Tseng, C. Sun, and Y. P. Guo, 2015b: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res. Atmos., 120, 2745, https://doi.org/10.1002/2014JD022221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. P. Li, Y.-H. Tseng, L. J. Li, C. Sun, and F. Xie, 2018: Influences of the North Pacific Victoria mode on the South China Sea summer monsoon. Atmosphere, 9, 229, https://doi.org/10.3390/atmos9060229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., Y.-H. Tseng, J. P. Li, C. Sun, F. Xie, and Z. L. Hou, 2019: Relative contributions of North and South Pacific sea surface temperature anomalies to ENSO. J. Geophys. Res. Atmos., 124, 62226237, https://doi.org/10.1029/2018JD030181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichhorn, A., and J. Bader, 2017: Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study. Climate Dyn., 49, 20612075, https://doi.org/10.1007/s00382-016-3415-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, R., W. A. Müller, A. Eichhorn, J. Baehr, and J. Bader, 2019: Atmospheric pathway between Atlantic multidecadal variability and European summer temperature in the atmospheric general circulation model ECHAM6. Climate Dyn., 53, 209224, https://doi.org/10.1007/s00382-018-4578-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M., and Coauthors, 2013: The Atmospheric General Circulation Model ECHAM6—Model description. Max Planck Institute for Meteorology, 172 pp., https://mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_135.pdf.

    • Search Google Scholar
    • Export Citation
  • Gui, S., R. W. Yang, J. Cao, and W. Huang, 2020: Precipitation over East Asia simulated by ECHAM6.3 with different schemes of cumulus convective parameterization. Climate Dyn., 54, 42334261, https://doi.org/10.1007/s00382-020-05226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., A. Loew, and A. Andersson, 2013: Combined evaluation of MPI‐ESM land surface water and energy fluxes. J. Adv. Model. Earth Syst., 5, 259286, https://doi.org/10.1029/2012MS000173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., X. Qu, and K. M. Hu, 2011: The impact of the tropical Indian Ocean on South Asian high in boreal summer. Adv. Atmos. Sci., 28, 421432, https://doi.org/10.1007/s00376-010-9224-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1985: Summer monsoon experiment—A review. Mon. Wea. Rev., 113 15901626, https://doi.org/10.1175/1520-0493(1985)113<1590:SMER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., S. P. He, K. Fan, and H. J. Wang, 2019: Relationship between the onset date of the meiyu and the South Asian anticyclone in April and the related mechanisms. Climate Dyn., 52, 209226, https://doi.org/10.1007/s00382-018-4131-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., and C. W. Zhu, 2016: A possible precursor of the South China Sea summer monsoon onset: Effect of the South Asian high. Geophys. Res. Lett., 43, 11 07211 079, https://doi.org/10.1002/2016GL071083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., and C. W. Zhu, 2019: Extremely late onset of the 2018 South China Sea summer monsoon following a La Niña event: Effects of triple SST anomaly mode in the North Atlantic and a weaker Mongolian cyclone. Geophys. Res. Lett., 46, 29562963, https://doi.org/10.1029/2018GL081718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., J. H. He, and L. J. Wang, 2012: On a possible mechanism for southern Asian convection influencing the South Asian high establishment during winter to summer transition. J. Trop. Meteor., 18, 473484.

    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., G. X. Wu, J. Y. Mao, and J. H. He, 2013: Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J. Climate, 26, 29762991, https://doi.org/10.1175/JCLI-D-12-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., Y. M. Liu, G. X. Wu, J. H. Yan, J. H. He, and S. L. Ren, 2015: Asian summer monsoon onset barrier and its formation mechanism. Climate Dyn., 45, 711726, https://doi.org/10.1007/s00382-014-2296-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., C. W. Zhu, and Y. Yuan, 2017: Two interannual dominant modes of the South Asian high in May and their linkage to the tropical SST anomalies. Climate Dyn., 49, 27052720, https://doi.org/10.1007/s00382-016-3490-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., B. Hoskins, and M. Blackburn, 2020: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan. Ser. II, 85B, 119, https://doi.org/10.2151/jmsj.85B.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., G. X. Wu, J. L. Hong, B. W. Dong, A. M. Duan, Q. Bao, and L. J. Zhou, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 11831195, https://doi.org/10.1007/s00382-012-1335-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, S. W., Z. G. Qian, and Q. Q. Wang, 1982: The climatic and synoptical study about the relationship between the Qinghai-Xizang high pressure on the 100 mb surface and the flood and drought in East China in summer (in Chinese). Plateau Meteor., 1, 110.

    • Search Google Scholar
    • Export Citation
  • Ma, L. B., Z. W. Zhu, J. Li, and J. Cao, 2019: Improving the simulation of the climatology of the East Asian summer monsoon by coupling the stochastic multicloud model to the ECHAM6.3 atmosphere model. Climate Dyn., 53, 20612081, https://doi.org/10.1007/s00382-019-04787-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100-MB. summertime anticyclone over southern Asia. Mon. Wea. Rev., 91, 312, https://doi.org/10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., F. Bahr, Y. Du Penhoat, E. Firing, S. P. Hayes, P. P. Niiler, P. L. Richardson, and J. M. Toole, 1992: The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J. Geophys. Res., 97, 14 28914 303, https://doi.org/10.1029/92JC01197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, https://doi.org/10.1029/2007JD008411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, K., T. Crueger, C. Jakob, and B. Möbis, 2017: Improved MJO‐simulation in ECHAM 6.3 by coupling a stochastic multicloud model to the convection scheme. J. Adv. Model. Earth Syst., 9, 193219, https://doi.org/10.1002/2016MS000809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, X. S., Q. L. Chen, Q. J. Zhong, R. Q. Ding, and T. Liu, 2019: Influence of the North Pacific Victoria mode on western North Pacific tropical cyclone genesis. Climate Dyn., 52, 245256, https://doi.org/10.1007/s00382-018-4129-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, https://doi.org/10.1175/JCLI3637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, X. J., D. J. Yang, and X.-Q. Yang, 2015: Characteristics and mechanisms of the subseasonal eastward extension of the South Asian high. J. Climate, 28, 67996822, https://doi.org/10.1175/JCLI-D-14-00682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S.-P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 43974417, https://doi.org/10.1175/JCLI3847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siongco, A. C., C. Hohenegger, and B. Stevens, 2015: The Atlantic ITCZ bias in CMIP5 models. Climate Dyn., 45, 11691180, https://doi.org/10.1007/s00382-014-2366-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and F. K. Zhu, 1964: The 100-MB flow patterns in Southern Asia in summer and its relation to the advance and retreat of the west-Pacific subtropical anticyclone over the Far East (in Chinese). Acta Meteor. Sin., 34, 385396, https://doi.org/10.11676/qxxb1964.039.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, and M. Wen, 2012: Meridional variation of South Asian high and its relationship with the summer precipitation over China (in Chinese). J. Appl. Meteor. Sci., 23, 650569.

    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, M. Wen, X. Y. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, https://doi.org/10.1007/s00382-013-1938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 26232634, https://doi.org/10.1175/JCLI-D-14-00454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., Y. T. Wu, S. Yang, and W. Zhou, 2019a: Role of the South Asian high in the onset process of the Asian summer monsoon during spring-to-summer transition. Atmosphere, 10 239, https://doi.org/10.3390/atmos10050239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, M. Wen, S. Yang, and W. D. Li, 2019b: Dynamic effect of the South Asian high on the interannual zonal extension of the western North Pacific subtropical high. Int. J. Climatol., 39, 53675379, https://doi.org/10.1002/joc.6160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, S. Yang, W. D. Li, and M. Wen, 2019c: Quasi‐biweekly oscillation of the South Asian high and its role in connecting the Indian and East Asian summer rainfalls. Geophys. Res. Lett., 46, 14 74214 750, https://doi.org/10.1029/2019GL086180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, D. Y., J. Cao, C. X. Zhao, I. Masiri, and S. Buntoung, 2021a: Interdecadal variation of summer rainfall in the Greater Mekong Subregion and its possible causes. Environ. Res. Lett., 16, 084064, https://doi.org/10.1088/1748-9326/ac188b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, D. Y., Y. L. Yang, and J. Cao, 2021b: Interdecadal variation of early spring rainfall over the southeastern edge of the Tibetan Plateau. J. Geophys. Res. Atmos., 126, e2020JD033058, https://doi.org/10.1029/2020JD033058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Coauthors, 2007: The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., Y. M. Liu, B. W. Dong, X. Y. Liang, A. M. Duan, Q. Bao, and J. J. Yu, 2012a: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 11691181, https://doi.org/10.1007/s00382-012-1334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F.-F. Jin, 2012b: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., S. L. Ren, J. M. Xu, D. X. Wang, Q. Bao, B. Q. Liu, and Y. M. Liu, 2013: Impact of tropical cyclone development on the instability of South Asian high and the summer monsoon onset over Bay of Bengal. Climate Dyn., 41, 26032616, https://doi.org/10.1007/s00382-013-1766-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., B. He, Y. M. Liu, Q. Bao, and R. C. Ren, 2015: Location and variation of the summertime upper-troposphere temperature maximum over South Asia. Climate Dyn., 45, 27572774, https://doi.org/10.1007/s00382-015-2506-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., B. He, A. M. Duan, Y. M. Liu, and W. Yu, 2017: Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Adv. Atmos. Sci., 34, 11691184, https://doi.org/10.1007/s00376-017-7014-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, W., G. Z. Fan, R. Q. Ding, J. P. Li, B. S. Li, J. H. Qin, and X. J. Zhou, 2019: Interdecadal change in the lagged relationship between the Victoria mode and ENSO. Atmos. Ocean. Sci. Lett., 12, 294301, https://doi.org/10.1080/16742834.2019.1620081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., and W. Chen, 2019: Distinguishing interannual variations and possible impacted factors for the northern and southern mode of South Asia high. Climate Dyn., 53, 49374959, https://doi.org/10.1007/s00382-019-04837-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, S. F. Chen, and D. W. Zhou, 2015: Modulation of the connection between boreal winter ENSO and the South Asian high in the following summer by the stratospheric quasi-biennial oscillation. J. Geophys. Res. Atmos., 120, 73937411, https://doi.org/10.1002/2015JD023260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, and S. F. Chen, 2017: The climatology and interannual variability of the South Asia high and its relationship with ENSO in CMIP5 models. Climate Dyn., 48, 35073528, https://doi.org/10.1007/s00382-016-3281-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, S. F. Chen, and J. Feng, 2018: PDO modulation of the ENSO impact on the summer South Asian high. Climate Dyn., 50, 13931411, https://doi.org/10.1007/s00382-017-3692-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, S. F. Chen, S. S. Sun, and S. S. Hou, 2020: Distinct impacts of two types of South Asian highs on East Asian summer rainfall. Int. J. Climatol., 41, E2718E2740, https://doi.org/10.1002/joc.6876.

    • Search Google Scholar
    • Export Citation
  • Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and G. X. Wu, 2001: The large area flood and drought over Yangtze River Valley and its relation to the South Asia high (in Chinese). Acta Meteor. Sin., 59, 569577, https://doi.org/10.11676/qxxb2001.061.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Y. F. Qian, and X. H. Zhang, 2000: Interannual and interdecadal variations of the South Asia high (in Chinese). Chin. J. Atmos. Sci., 24, 6778.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., G. X. Wu, and Y. F. Qian, 2002: The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733744, https://doi.org/10.2151/jmsj.80.733.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 103 101 13
Full Text Views 50 48 11
PDF Downloads 72 70 13

Response of the South Asian High in May to the Early Spring North Pacific Victoria Mode

View More View Less
  • 1 aDepartment of Atmospheric Sciences, Yunnan University, Kunming, China
  • | 2 bSchool of Marine Science, Sun Yat-Sen University, Zuhai, China
  • | 3 cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zuhai, China
Restricted access

Abstract

The interannual variability of the South Asian high (SAH) in May plays an important role in the evolution of the Asian summer monsoon. In this study, reanalysis data and an atmospheric general circulation model are employed to investigate the response of the SAH in May to the early spring North Pacific Victoria mode (VM) on an interannual time scale. Observational results indicate a robust linkage between the early spring VM and the SAH position in May, even if the El Niño and Indian Ocean basin model (IOBM) signals are removed. When the early spring VM is in its positive phase, a zonally divergent circulation anomaly in the upper troposphere forms with tropospheric divergence over the tropical eastern Pacific and anomalous convergence over the South China Sea–Maritime Continent region. As a result, westerly anomalies associated with the zonally divergent circulation anomaly appear in the upper troposphere over the Indian Ocean–Indochina Peninsula that impede the northwestward movement of the SAH in May. When the early spring VM is in its negative phase, the opposite conditions occur. Three sets of numerical experiments were performed to verify the key physical process revealed in the observational results. The early spring VM is a reliable indicator of the interannual variability of the SAH position in May.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ruowen Yang, yangruowen@ynu.edu.cn

Abstract

The interannual variability of the South Asian high (SAH) in May plays an important role in the evolution of the Asian summer monsoon. In this study, reanalysis data and an atmospheric general circulation model are employed to investigate the response of the SAH in May to the early spring North Pacific Victoria mode (VM) on an interannual time scale. Observational results indicate a robust linkage between the early spring VM and the SAH position in May, even if the El Niño and Indian Ocean basin model (IOBM) signals are removed. When the early spring VM is in its positive phase, a zonally divergent circulation anomaly in the upper troposphere forms with tropospheric divergence over the tropical eastern Pacific and anomalous convergence over the South China Sea–Maritime Continent region. As a result, westerly anomalies associated with the zonally divergent circulation anomaly appear in the upper troposphere over the Indian Ocean–Indochina Peninsula that impede the northwestward movement of the SAH in May. When the early spring VM is in its negative phase, the opposite conditions occur. Three sets of numerical experiments were performed to verify the key physical process revealed in the observational results. The early spring VM is a reliable indicator of the interannual variability of the SAH position in May.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ruowen Yang, yangruowen@ynu.edu.cn
Save